
Beiträge des Instituts für Umweltsystemforschung

der Universität Osnabrück

Herausgeber: Prof. Dr. Michael Matthies

Beitrag Nr. 24

Probabilistic Exposure Assessment

Parameter Uncertainties and their Effects on Model Output

Kai Leßmann

November 2002

ISSN-Nr. 1433-3805



Probabilistic Exposure Assessment
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Abstract

In probabilistic exposure assessment, parameter uncertainties are modeled by probability
distributions. This thesis investigates how parameterization strategies for input distri-
butions affect the computed uncertainty. Monte-Carlo simulations of eleven representa-
tive chemicals were performed with the multi-media model SimpleBox, part of the Euro-
pean Union System for the Evaluation of Substances (EUSES). This study focuses on its
physico-chemical parameters describing aqueous solubility, vapor pressure, and octanol-
water partitioning of the substance. A reliable data basis for their parameterization was
selected from available literature by applying five selection criteria. The resulting data
are scarce and broadly distributed, frequently ranging over several orders of magnitude
with an average of less than six values per property.

The influence of the choice of input distribution types was assessed by performing simula-
tions with uniform, triangular, and lognormal distributions, parameterized with identical
mean and variance. In particular, the impact on computed mean, variance and distri-
butional shape were assessed. Plots of the functional dependency between parameters
and computed values enabled to understand and interpret the resulting differences. The
impact on the computed variance was found to exceed the marginal effect on the com-
puted mean by one order of magnitude. Furthermore, the computed variance mirrors the
informational content of the parameter distributions, as it is assigned to the distribution
types in maximum entropy theory. The uncertainty about the shape of the parameter
distribution was quantified by computing an equivalent uncertainty about its location.
Compared to the standard error of the mean of the data used in this study, the impact of
the shape is significant. But it is marginal compared to the large deviation among values
reported in literature. Hence, the choice of a distribution type is only of concern, when
the uncertainty about the location is in the same order of magnitude. Effects on the shape
of the computed distribution could be identified in case of near-linear functional depen-
dencies. When functional dependencies were extremely non-linear, the distortion they
imposed on the computed distributional shape harmonized the differences in parameter
distributions. And the effects decreased with the number of probabilistically simulated
parameters, as the computed distribution becomes approximately lognormal in agreement
with the central limit theorem for multiplicative models.

When data are insufficient for statistical analysis, parameter uncertainties may be derived
by expert judgment, e.g. given as default values. Four approaches of different specificity
reported in literature, which use generic uncertainties, have been compared. More gen-
eral approaches were representative rather than conservative in input uncertainties and
simulation results. The deviation among the assumed generic coefficients of variability is
mostly within the same order of magnitude. But it is large enough to conclude that there
is no consensus about default uncertainties.

Four pairs of scenarios, each representing a potential way of parameterizing input distri-
butions, have been compared and analyzed in view of results from this study. Often there
was no uniform effect on the target distributions, but some general trends were found,
and exceptions to them could be understood. Simulation results support the claim that



most effort should be made to determine the location of the parameter distributions as
closely as possible. The lesser impact of spread and shape becomes important once the
uncertainty about the location is decreased to a comparable order of magnitude. And
results of generic approaches in this setting are similar to more specific approaches and
are thus deemed to be sufficient.
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Chapter 1

Introduction

Probabilistic exposure assessment is the application of probabilistic uncertainty analysis
to exposure assessment as a part of chemical risk assessment. The aim of uncertainty
analysis is to quantify the uncertainty about simulation results, and to identify its causes.
The objective of this thesis is to investigate how parameterization strategies for input
probability distributions affect the computed uncertainty.

1.1 Risk Assessment

When a new chemical is going to be produced in a member state of the European Union,
or if a chemical is newly imported into a member state, the manufacturer or the importer
is required to notify the concerning authorities. The authorities are in turn required to
carry out an assessment of the risks of the substance to man and environment following
the Technical Guidance Document of the European Commission (EC, 1996).

1.1.1 The Risk Assessment Process

Risk assessment consists of four parts: hazard identification, effects assessment, exposure
assessment, and risk characterization. Results from the risk assessment are the basis for
risk management, which includes drawing conclusions from the results and eventually
planning actions to reduce risks. The introduction to the steps of risk assessment in the
next sections follows van Leeuwen (1995).

Hazard Identification

Hazard identification seeks to identify any adverse effects that a chemical can possibly
have on an exposed individual or ecosystem. It does not consider whether these hazards
actually occur, i.e. it ignores the likelihood of exposure.

15



16 CHAPTER 1. INTRODUCTION

Effects Assessment

Effects assessment is concerned with estimating dose-response relationships, i.e. the de-
pendency of the extent of effects that a substance has, and the dose or level of exposure.
Human health risk assessment concentrates solely on possible effects on human beings.
Environmental risk assessment, which is the scope of this work, deals with potential ef-
fects on ecosystems, i.e. adverse effects on communities of species in habitats exposed to
toxic substances (Solomon and Takacs, 2002, p. 285).

The output of a standard effects assessment is a set of predicted no-effect concentra-
tions (PNEC), which estimate concentrations at which individuals of a certain species
are not affected by the substance. To cope with the great diversity of species in ecosys-
tems, usually a simplified approach is taken by deriving PNEC for different environmental
compartments: water, sediment, soil and air.

Exposure Assessment

In contrast, exposure assessment seeks to quantify substance concentrations in poten-
tially affected organisms or in environmental compartments. This can either be done by
collecting field data of substance concentrations, or by estimating the predicted environ-
mental concentration (PEC) from knowledge about the substance and the environment.
Multimedia exposure models are frequently used to derive PEC.

Risk Characterization

Risk characterization integrates the results of effects assessment and exposure assessment
and tries to measure the likelihood and severity of adverse effects in the environmental
compartments. A common approach is to combine PNEC and PEC to a risk characteri-
zation ratio (RCR) defined as the ratio PEC/PNEC, again, for each of the compartments.
An RCR value significantly less than one indicates that according to the estimates, the
risk of adverse effects is small, and no actions to reduce the risk are necessary. If, in
contrast, the RCR exceeds one, then a substantial risk is indicated, and either action
must be taken or the risk assessment process may be repeated in greater detail, hoping
that the previous assessment only overestimated the risk.

1.1.2 Shortcomings of Deterministic Risk Assessment

A shortcoming of this approach is that existing uncertainties in neither the PEC nor the
PNEC are explicitly considered. It is common practice to compensate for this by com-
puting worst case scenarios on the exposure side, i.e. wherever uncertain, conservative
estimates are made. On the effects side so-called uncertainty factors (extrapolation fac-
tors) are applied. For each extrapolation, e.g. between trophic levels, from laboratory to
field, or from acute effects to chronic effects, the PNEC is increased by a factor, e.g. one
order of magnitude for each extrapolation step. Usually extrapolation factors range from
10 to 10 000 (van Leeuwen, 1995).
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Such procedures are not consistent with the scientific method1 and may often lead to
unrealistically large upper limits (Seiler and Alvarez, 1996). RCR derived in such a fashion
only indicate whether the threshold value of one is exceeded. The amount by which it is
exceeded (or stays below) cannot be interpreted when the dose-response relationship is
unknown, which frequently is the case (Jager et al., 2001).2 It is then only possible to
compare chemicals in a relative risk ranking (van Leeuwen, 1995). However Jager et al.
(2001) show that such a ranking may fail when uncertainties of the PEC/PNEC ratios
differ.

1.1.3 Probabilistic Risk Assessment

Jager et al. (2001) suggest several possible improvements of the status quo (deterministic
risk assessment). Ideally, both sides of the risk assessment procedure should be treated
probabilistically. In ecological effects assessment this would mean producing explicit dose-
response relationships. A dose-response relationship could be the response of one species
as a function of the substance concentration it is exposed to (dose), or a species sensitivity
distributions (SSD). An SSD describes the variation of effects of a chemical over a set of
species as a statistical distribution, e.g. what percentage of the species is affected given a
certain concentration of the chemical. SSD are commonly derived from laboratory testing
using selected representative species. On the exposure side, a probabilistic exposure
assessment would produce not a deterministic PEC, but a probability distribution of
PEC. Same as the deterministic PEC, such a distribution can either be derived from field
measurements, or from a quantitative uncertainty analysis.

In quantitative uncertainty analysis, uncertainties are attached to all inputs of a model.
These uncertainties are then propagated through the model yielding uncertainties for ev-
ery output value of the model. In probabilistic uncertainty analysis, uncertainties are
represented by probability distributions. There are analytical as well as numerical meth-
ods to propagate input distributions (or characteristics of these) through the model, e.g.
analytical variance propagation (Slob, 1994), first-order analytical methods (MacLeod
et al., 2002) or the first-order reliability method (Hamed and Bedient, 1997). A compre-
hensive overview can be found in Cullen and Frey (1999, Ch. 7). Among the numerical
methods, Monte-Carlo simulation has become the most commonly used (Cullen and Frey,
1999, p. 196).

In the risk characterization step, SSD and the PEC distribution may then be combined
into a joint distribution of effects. Results of the probabilistic approach can be presented
in statements such as ”there is a x percent chance of affecting y percent of the species” or

1 The scientific method applied to making models with predictive capabilities is summarized in Seiler
and Alvarez (2001). Five preconditions are listed that make hypothesis testing ”the final and decisive
step of the scientific method.” The five preconditions are sufficiency of the information (data set) used
(e.g. to determine model parameters), replicability and comprehensiveness of the data set, sound logic in
the way the model is derived, and honesty in the sense that arguments for and against the model should
be considered. Only then is verification of a model or hypothesis meaningful.

2Even though PNEC or other effective concentrations (EC) are often derived from parts of a dose-
response relationship, additional information about the dose-response relationship is rarely published
(Steinbach, 1999, p. 8).
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Figure 1.1: Distribution of effects.
Distribution of effects as a result of probabilistic risk assessment, according to Steinbach (1999) and
Solomon and Takacs (2002). The effects assessment produces a PNEC distribution, and the exposure
assessment produces a probability distribution of PEC. Both are integrated into a distribution of effects,
i.e. the exceedence of the PNEC as a function of the percentage of species that are affected.

more generally, as exceedence plots giving the exceedence of the PNEC for any percentage
of species (Figure 1.1).

In contrast to deterministic risk assessment, probabilistic risk assessment makes the un-
certainties explicit. Uncertainties are dealt with in a transparent and more scientific way,
and more information about the risk is passed on. Therefore, a sounder basis for decision
making is provided. However, in the risk characterization step, two distributions of sig-
nificantly different nature need to be combined. While the simulation that produces the
PEC distribution may be adapted to miscellaneous specific situations, SSD are derived in
laboratory testing. They are neither specific nor can they be adapted to new situations.
Uncertainties of extrapolating a laboratory SSD to the field may be accounted for by
applying extrapolation factors, yet regional specifics are still ignored.

As an alternative to treating both sides probabilistically, Jager et al. (1997) suggest to
leave the effects assessment as it is, and improve only exposure assessment by utilization
of probabilistic uncertainty analysis. The PEC distribution is then compared with the
”best-guess” PNEC from deterministic assessment, and a probability to exceed this PNEC
characterizes the risk. While the advantage of this option is that it is easy to perform and
more acceptable for decision makers (Jager et al., 2001), it should be noted that variance
and uncertainty about a toxicological factor (i.e. effects assessment) frequently dominate
the overall variance (Cullen and Frey, 1999, p. 2), hence the larger share of the overall
uncertainty may be ignored.

The following sections provide a short introduction to parameter uncertainties.
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Figure 1.2: Distribution of PEC.
When only a fixed PNEC is available, a probability to exceed the PNEC can be derived by comparing
the PNEC with results from probabilistic exposure assessment, namely the probability distribution of the
substance concentrations.

1.2 Parameter Uncertainty

Uncertainty of the model output is defined as the possible error or actual variability of
the output value as a result of parameter uncertainty or model simplifications (Beyer and
Matthies, 2001). Berding et al. (2000) add one more cause of uncertainty to this list when
they distinguish three kinds of uncertainty: model uncertainty, scenario uncertainty and
parameter uncertainty.

• Model uncertainty (also structural uncertainty) refers to uncertainties about the
accuracy of the model, which are caused either by lack of knowledge about the
modeled system or by necessary simplifications. Model uncertainty can only be
assessed qualitatively, and is addressed by checking model structure, assumptions
and its mathematics for correctness.

• Scenario uncertainty occurs when the available data are incomplete for properly
parameterizing the model.

• Parameter uncertainty subsumes uncertainties in input parameters, e.g. due to given
variability of the quantity, or imperfect measurement of it. The latter two may be
subject to quantitative analysis.

Within quantitative uncertainty analysis, i.e. the analysis of parameter uncertainty, two
types of uncertainty are frequently distinguished: uncertainty due to lack of knowledge,
also referred to as true uncertainty, and variability of the quantity.
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1.2.1 Variability, True Uncertainty, and Measurement Error

Variability refers to given heterogeneity or diversity among individuals or in a property
(Anderson and Hattis, 1999). It causes uncertainty in the model output, when its dimen-
sion is not explicit in the model, e.g. when averages over space, time, or temperature are
taken. Variability is not reducible through further study (USEPA, 1997). True uncer-
tainty, sometimes simply referred to as uncertainty, stems from partial ignorance or lack
of perfect knowledge (Anderson and Hattis, 1999). It is often a result of measurement
errors.

The error of a measurement has two complementary sources, random error and systematic
error (Seiler and Alvarez, 1995). Random error is random deviation from the true value. It
is assumed to be normally distributed about the true values. Hence, the true value can be
approximated by the mean of the measurements, and its uncertainty may theoretically be
reduced by conducting additional measurements. The random error of a measurement is
usually reported along with the measured value. Systematic error affects all measurements
in the same manner, and can therefore not be decreased by further measurements. Causes
for systematic errors are numerous, e.g. poorly calibrated measuring equipment. In fact,
any error that is not random is systematic by definition.

1.2.2 Uncertainty of Literature Values

Reported values from measurements of physico-chemical properties performed in different
laboratories frequently differ by several orders of magnitude (Mackay et al., 1999). It
is known that some properties are extremely difficult to determine at certain ranges of
their values, due to the physico-chemical behavior of the substance that they imply. One
example is the measurement of a large octanol-water partitioning coefficient (KOW), which
describes the tendency of a substance to be lipophilic or hydrophilic, where large values
of the KOW indicate hydrophilicity (partitioning coefficients are introduced in Section
2.2). The measurement of the octanol-water partitioning coefficient of a very hydrophilic
substance (KOW larger than 106, i.e. log KOW greater 6) ”requires meticulous technique”
(Mackay et al., 1999). To give one example, the nine reported measurements of log KOW

of octachloro-dibenzo-p-dioxin considered in this study range from 8 to 13. Deviations of
such a magnitude are usually beyond the random error estimated for each measurement,
and may therefore be assumed to be due to systematic errors.

1.2.3 Distinguishing Uncertainty and Variability

When performing probabilistic risk assessment, it is recommended to distinguish between
uncertainty and variability (USEPA, 1997; Anderson and Hattis, 1999). This can be done
by performing so-called two-dimensional simulations (Cullen and Frey, 1999, p. 217). A
simple approach to perform two-dimensional simulations is to separate ”variable” from
”uncertain” parameters (Decisioneering Inc., 1999).

Two-dimensional simulation is referred to as double looping because the variability in
parameters is simulated in an inner loop, surrounded by an outer loop that simulates



1.2. PARAMETER UNCERTAINTY 21

the true uncertainty of parameters. In each repetition of the outer loop, a set of values
of the ”uncertain” parameters is determined according to their distributions. Then the
inner loop is run to determine the variability of the model output by considering the
fixed set of values from the outer loop, and the distributions of the ”variable” parameters.
Hence the result of a two-dimensional simulations is a set of output distributions, each
representing the variability of the output value for a specific choice of values for the
uncertain parameters. Summary statistics can be applied to the result to estimate its
uncertainty, e.g. the deviation among the means and variances of the output distributions.

However in many cases parameters are both variable and uncertain to an extent (Cullen
and Frey, 1999, p. 225), take for example physico-chemical substance properties on the
one hand, and body weight on the other hand.

Physico-chemical substance properties are often quite uncertain when they are difficult to
measure (Mackay et al., 1999), thus one could categorize them as ”uncertain” parameters.
But they are also variable, e.g. they vary with temperature (Beyer et al., 2002). When an
average temperature is assumed (e.g. in SimpleBox), then the temperature dependency
adds variability to the physico-chemical substance parameters. Body weight is a quantity
that can easily be precisely measured, of course it has a great variability over the indi-
viduals of a population. Hence body weight may be thought to be a purely ”variable”
quantity. But when the variability of body weight is estimated from a collected measure-
ment data, its representativeness and the limited number of the data make the estimated
mean, variance, and shape of the body weight distribution uncertain.

Hoffmann and Hammonds (1994) suggest a more sophisticated approach to two-
dimensional simulation that allows to deal with parameters that are both variable and
uncertain. They suggest to derive parameter distributions that only account for the vari-
ability, e.g. by parameterizing a distribution with an estimated mean and an estimated
variance. The uncertainty of the parameter can then be modeled by estimating the un-
certainties of the distribution parameters of the variability distribution, i.e. the mean and
the variance. This way, performing a two-dimensional uncertainty analysis is not merely
a different simulation technique to be applied to the same data. It is a different approach,
which has different data needs and requires structural changes in the input module of the
simulation model.

Hoffmann and Hammonds (1994) also suggest a criterion to determine whether or not
two-dimensional simulation is necessary. They consider the endpoint of the simulation,
i.e. the computed values that will be subject to interpretation, and distinguish two cases
for endpoints:

1. fixed but unknown values

2. unknown distributions of values

If the desired endpoint is the distribution of values over e.g. a population, then variability
needs to be treated as such, and in the presence of uncertainty, two-dimensional simulation
becomes necessary. When the endpoint is assumed to be a fixed value, then the computed
distribution represents the uncertainty of the value, and all inputs may be regarded as
uncertainty only.
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1.3 Parameterization of Probability Distributions

The interface of parameter uncertainty and probabilistic assessment is the selection and
parameterization of probability distributions, which correspond to the uncertainty about
parameters. Parameter uncertainty arises from true variability of the parameter and
true uncertainty, i.e. lack of knowledge, about the correct value of the parameter. Both,
variability and true uncertainty, are quantified by assessing the available information on
a parameter. Usually, there are different kinds of information:

• measurement data

• theoretical considerations

• expert judgment

• defaults

Corresponding to these types, there are methods of utilizing the information. If a suffi-
cient, representative number of measurement data are available, they can be subjected to
statistical analysis. Distribution types can be determined by fitting a distribution to the
data, or rejected by applying a goodness-of-fit test. Characteristics of distribution func-
tions can be estimated from a data set (Vose, 2000, Ch. 7+9). In particular the selection
of a distribution type can be aided by theoretical considerations, e.g. any distribution
ranging over negative values may be excluded for non-negative properties.

When the data basis is insufficient to apply statistical methods, expert judgment may be
utilized. According to NCRP (1996) an expert has ”(1) training and experience in the
subject area resulting in superior knowledge in the field, (2) access to relevant informa-
tion, (3) an ability to process and effectively use the information, and (4) is recognized
by his or her peers or those conducting the study as qualified to provide judgments about
assumptions, models, and model parameters at the level of detail required.” There are
various possible ways of utilizing expert judgment and combining it with other informa-
tion. Expert judgment can be exercised in selecting a representative data basis for further
statistical analysis. More weight is put into expert judgment by adopting a distribution
type suggested by experts, or selecting one or more characteristic of the distribution, e.g.
location and spread, according to an expert. Finally, entire probability distributions can
be elicitated from experts (Vose, 2000, Ch. 10). As the main drawback, expert judgment
is more subjective compared to statistical analysis, and tends to be less transparent.

The adoption of default values is closely related to expert judgment because defaults are
often selected by experts. But they may still heavily rely on data, i.e. in case of default
distributions for mainly variable parameters such as body weight (Finley et al., 1994).
When defaults are commonly used in studies, their comparability is greatly enhanced.
Furthermore, the arduous task of defining distributions from expert opinion, which also
depends on the availability of experts, does not need to be repeated redundantly.

”Clearly, there is a need for a default set of agreed parameter distributions for
chemical risk assessment.” (Jager et al., 2001)
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1.4 Influence of the Distribution Characteristics

The aim of conducting exposure assessment is to derive PEC that are as precise and
accurate as possible. The main interest in performing a probabilistic exposure assessment
is to incorporate the uncertainty in the estimation of the PEC. The quality of probabilistic
analysis depends on the quality of its input data.

Berding et al. (2000) stress, that results from Monte-Carlo analysis are very sensitive for
badly chosen parameter distributions because input distributions directly affect the result
via Monte-Carlo simulation. Bukowski et al. (1995) studied the relative importance of
the choice of input distributions versus the inclusion or exclusion of correlation between
parameters. They conclude that the impact of the choice of input distributions is larger
than the impact of inclusion or exclusion of parameter correlation. Moreover they note
that some combinations of input distribution types resulted in ”remarkedly wider distri-
butions” than others. Binkowitz and Wartenberg (2001) performed a literature review
of procedures used to derive exposure parameter distributions from data. They report
that the choices for input distributions made by investigators may substantially affect the
output of their analyses.

Hence in any Monte-Carlo analysis, the sensitivity of the the findings and conclusions to
changes in the distributional shape of the parameters should be tested (USEPA, 1997).
However, this is rarely done by any author in risk assessment (Binkowitz and Wartenberg,
2001).

This study addresses the question, what the effects of different choices of parameter
distributions for partioning data are, and how they compare to other uncertainties in
exposure assessment. In particular, the following aspects are investigated:

• How large are the uncertainties based on literature values in case of physico-chemical
properties of a set of representative substances?

• How do the main characteristics of parameter distributions affect the computed
distributions of PEC? What are the effects of changes in location, spread and shape
of the input distributions on location, spread and shape of the output distribution?

• How do the impacts of changes in the different characteristics compare to each
other?

• What options for parameterizing input distributions for probabilistic analysis are
there in situations of scarce data?





Chapter 2

Data

In probabilistic uncertainty analysis parameters are modeled by probability distributions.
This study deals with the uncertainty of physico-chemical properties of chemicals due to
a lack of knowledge of the true values. Values of octanol-water partitioning coefficients,
aqueous solubility, and vapor pressure reported in literature often vary over several orders
of magnitude. Data was collected to provide a basis to parameterize distributions to
reflect these uncertainties.

2.1 Substances

In this study, eleven exemplary substances are simulated. The list of substances is taken
from Berding et al. (2000). According to Berding et al. these substances are repre-
sentative for a large number of classes of substances. Properties that were considered
in the selection of the substances are hydrophilicity, aqueous solubility, volatility, oc-
currence in the environment, and the extent of use and degradability (Berding, 2000,
p. 23). The selected substances are: the five polychlorinated dibenzo-p-dioxins with
the highest concentrations measured in the environment, i.e. 2,3,7,8-tetrachlorodiben-
zo-p-dioxin (TCDD), 1,2,3,4,7-pentachloro-dibenzo-p-dioxin (PeCDD), 1,2,3,4,7,8-hexa-
chloro-dibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachloro-dibenzo-p-dioxin (HpCDD),
and octachloro-dibenzo-p-dioxin (OCDD), di-(2-ethylhexyl)phthalate (DEHP) being the
phthalate produced in the vastest quantities, the polycyclic musk fragrance 1,3,4,6,7,8-
hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-[g]-2-benzopyrane (HHCB), the typical air
pollutants 1,2-dichloroethane (EDC) and benzene, linear alkyl benzene sulfonates (LAS)
as a typical water pollutant, and ethylendiaminetetra acetic acid (EDTA) which is similar
to LAS yet not as degradable in the environment. Table 2.1 lists all substance abbrevia-
tions used, and the corresponding full substance names.

2.2 Parameters

Among the parameters concerning the fate of a substance in the environment, partitioning
coefficients are of major importance. Partitioning coefficients between two media, medium
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Table 2.1: List of Substances. Abbreviations and full names of the chemicals selected for this study.

Abbr. Substance Name

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

PeCDD 1,2,3,4,7-pentachloro-dibenzo-p-dioxin

HxCDD 1,2,3,4,7,8-hexachloro-dibenzo-p-dioxin

HpCDD 1,2,3,4,6,7,8-heptachloro-dibenzo-p-dioxin

OCDD octachloro-dibenzo-p-dioxin

DEHP di-(2-ethylhexyl)phthalate

HHCB 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-[g]-2-benzopyrane

EDC 1,2-dichloroethane

benzene benzene

LAS linear alkyl benzene sulfonates

EDTA ethylendiaminetetra acetic acid

i and medium j say, are defined as the ratio of substance concentrations at thermodynamic
equilibrium in these media, Kij = Ci/Cj. It follows, that an unknown partitioning coef-
ficient can be calculated from two others, e.g. using the equation Ki1 = Kij/K1j (Trapp
and Matthies, 1998, p. 45). Figure 2.1 illustrates how to compute the KOW from KAW

and KOA. Hence, only a subset of three partitioning coefficients out of six partitioning
coefficients (between the four phases gas (A), aqueous dissolved (W), organic dissolved
(O), and pure substance) is needed. Moreover, partitioning coefficients can be computed
from solubilities of the substance in media, i.e. solubility in water (aqueous solubility) and
vapor pressure, which is closely related to solubility in air1 (Beyer et al., 2002). Here, the
octanol-water partitioning coefficient KOW, vapor pressure P0, and aqueous solubility SW

are selected. Other partitioning coefficient that are needed can be derived from these.

In addition to the partitioning coefficients, the mode of entry of a substance and its
degradation in the environmental compartments have an important impact on the en-
vironmental fate of a substance (Berding et al., 2000). In SimpleBox, substances may
be emitted into air, industrial soil, surface water, and waste water. The mode of entry
is modeled by two groups of four parameters, which describe emission of the substance
on regional and continental scale. Values from Berding et al. (2000) are used for these
parameters, summary tables are given in the appendix (Tables B.1 and B.2). Data for
degradation rates is too scarce to derive probability distributions (Berding et al., 2000, p.
224). Degradation rates are therefore neglected in the probabilistic analysis in this study,
i.e. fixed values from Berding et al. (2000) are assumed.

1Solubility in air and vapor pressure differ by a factor of temperature times universal gas constant.
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Figure 2.1: Phases and partitioning.
Phases and partitioning coefficients (Illustration adapted from Wania (2002)). An unknown partitioning
coefficient can be calculated from two others, here the KOW is computed from from KAW and KOA as
KOW = KAW × KOA. SX denotes solubility in solvent X; PL is the vapor pressure over liquid phase.

2.3 Sources of Substance Data

Most data are taken from two sources: the handbook of physico-chemical properties by
Mackay et al. (1999) and a compilation article by Shiu and Ma (2000). Numerous original
articles referenced in these works were consulted to resolve doubts, e.g. in cases where
values cited in Mackay et al. (1999) and Shiu and Ma (2000) were contradicting.

It would be preferable to extend the literature search to other handbooks, or even all
the original articles referenced in handbooks and compilations. However, necessary re-
sources and time were lacking within this study. Moreover the aim of this work is not to
compute precise results, but to discuss the parameter distributions in general, and their
parameterization and the sensitivity of their shapes in particular.

2.4 Selecting a Data Basis

The aim of the handbook of Mackay et al. (1999) is to present sufficient experimental
data and lists of citations to enable interpretation of the data and the selection of a
”best” or ”most likely” value. Mackay et al. note that not all reported values are equally
reliable. References to the original publication of a measurement in peer reviewed scientific
literature are rated over e.g. calculated values, or values from correlations. This implies
that only a selection of values from handbooks and compilations ought to be used. Results
from Pontolillo and Eganhouse (2001) stress this point.
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Pontolillo and Eganhouse (2001) evaluated the quality of available literature values for
aqueous solubility and octanol-water partitioning coefficient in case of DDT and DDE.
”Egregious errors in reported data and references” were found. In addition to data and
citation errors, Pontolillo and Eganhouse point out the vast extent of data duplication.
They note that in particular handbooks and compilations suffer from this.

It follows from Pontolillo and Eganhouse (2001) that data taken from handbooks or
compilations should always be verified by obtaining the original references. The foremost
value of handbooks and compilations would hence be that they provide lists of references.
In this study, original references were obtained and used as much as possible.

The following priorities in data selection are recommended in OECD (2002): measured
data following OECD guidelines, measured data from other ”acceptable” methods, data
from quantitative structure activity relationship (QSAR) analysis, and finally default
values and expert judgment.

Criteria of Selection Applied in this Study

A subset of the available data is selected for use in this study. The aim is to select only
data that are considered reliable. The following set of criteria was derived and applied to
the data from Mackay et al. (1999) and Shiu and Ma (2000).

1. Age of datum: Data of an older date than 1980 was excluded.

2. Original references: Only values reported with reference to the original publication
of the datum are adopted.

3. Measured data: Only data from experimental measurements are adopted. Values
e.g. from calculation, correlation, or summarizing values are rejected.

4. Temperature of measurement: Measurements should have been conducted at a tem-
perature of 25◦C, however temperatures in the range from 20◦C to 30◦C were toler-
ated.

5. Method of determination: In rare cases values were rejected because of the method
of determination.

Over time, methods of determination have improved, hence values stemming from old
experiments may be less precise than values from more recent measurements. It would
hence be desirable to assess the precision and consistency2 of all measurement methods,
and to select the measured values accordingly. In lieu of the laborious assessment of all
measurement methods, the pragmatic approach of a cut-off date was chosen. The year
1980 was somewhat arbitrarily selected. The cut-off applied to all the dioxin data only in

2If the selected data are subjected to statistical analysis, it is required that a homogeneous universe is
sampled. Strictly speaking, the measurements of a substance property are only a representative sample
of a homogeneous universe if the same measurement method is applied. It is hence desirable that only
values are selected that are consistent in the sense that their measurement methods are comparable in
accuracy and precision.
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case of one value (one KOW value in case of TCDD). The greatest share of values (22 of 79
values, or 28 percent) was omitted due to the cut-off in case of benzene SW.3 According to
Pontolillo and Eganhouse (2001) the scatter in the reported values for DDT/DDE aqueous
solubilities and octanol-water partitioning coefficients has not decreased with time, i.e.
they found no indication of the above assumption. However, the four substance/property
combinations considered in that study do not suffice to draw general conclusions.

In addition to values reported with references to the original publication, Mackay et al.
(1999) reports values quoted from other secondary sources. The available resources and
time constraints did not allow to verify these data. They were therefore omitted. As
mentioned above, it is necessary to exercise great caution with such citations (Pontolillo
and Eganhouse, 2001).

Calculated values are not necessarily less precise than data from experimental measure-
ments. For example values from a regression and interpolation of many precisely measured
values of similar chemicals may well possess great precision. Since it is not in the scope of
this work to assess the computational methods and their data bases, values from calcula-
tions, correlations, or estimations were neglected. According to Pontolillo and Eganhouse
(2001) the accuracy and precision of such computational methods is questionable when
the data used in their model development and validation is of unknown reliability, as is
the case with much of the data they encountered. Furthermore, when calculated values
depend on a data basis of measured values, they will be correlated to this data basis.
This leads to implicitly using the same measured values twice, giving the data basis a
bias towards these values. Selection criterion 3 is in agreement with Shiu and Ma (2000),
who list only experimental values in their tables of vapor pressure and aqueous solubility
values. Shiu and Ma ”believe that it is preferable” to rely on experimental data only.

The method of determination served as a criterion in the works of Shiu and Mackay
(1986), Mackay et al. (1999), and USEPA (1994) (according to McKone et al. (1995, p.
10)). Detailed knowledge of the experimental methods is required in order to discriminate
the reliability of measured values. In this study, this criterion was only applied in rare
cases.

Additional and Alternative Criteria

Some of the studies cited applied still other criteria as the ones conducted here. They are
listed in the following.

• Mackay et al. (1999) used information derived from QSAR analyses performed for
groups of substances when selecting values to recommend as ”best values” as a
selection criterion.

• In the same context, Mackay et al. (1999) considered ”the perception of the objec-
tives of the authors [. . . ] as an indication of the need of the authors for accurate
values.” As mentioned above, original references were not consulted for all values,
hence no assumptions about the author’s objectives could be made.

3In case of benzene, 6 of 82 KOW and 22 of 79 SW were omitted. Likewise, 3 of 42 DEHP KOW, 6 of
32 SW, and 5 of 23 P0 and 3 of 28 EDC KOW, 2 of 52 SW, and 6 of 28 P0 were omitted.
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• Shiu et al. (1988) exploited thermodynamic consistency among the physico-chemical
properties as a criterion. Similarly, Beyer et al. (2002) used thermodynamic rela-
tionships to derive a set of estimates for partitioning parameters such that these
estimates are minimally divergent from the experimental values, yet consistent in
the sense of thermodynamics. The relationships from thermodynamics could be ex-
ploited here as well to extend the data basis, by converting measurements of related
properties to one of the three physico-chemical properties of interest in this study.
It was refrained from doing so, because a significant enhancement was not expected
and hence the conclusions of this study are not affected by this.

• USEPA (1994) took the reliability of the laboratory which reported the value into
account when selecting a data basis to estimate nominal values as well as their
uncertainties (as in McKone et al., 1995).

2.5 Resulting Data Set

Application of the above criteria to the data sources Mackay et al. (1999) and Shiu and
Ma (2000) lead to a rather small data basis. The number of measurements per physico-
chemical property and substance ranges from one to ten. In the exceptional case of
octanol-water partitioning coefficient of benzene, there are 22 measurements. 75 percent
of the parameters have a data basis of 2–7 values (Figure 2.2).

Table 2.2 shows the numbers of values available in the literature consulted along with
the number of values that were selected. From Table 2.2 and Figure 2.2 it is obvious,
that the data basis is insufficient for parameter estimation in most cases. Estimation of
the mean generally needs to be based on at least 5 values, estimation of the variance
requires more than 20 values (see discussion of Tukey’s rule in Section 3.1). Only in
about half the cases, a mean can be estimated. One should refrain from estimating
the variance of any parameter, except the benzene octanol-water partitioning coefficient.

Table 2.2: Numbers of selected values.
Table of data availability. The two numbers given are the number of selected values for each parameter
and the total number of values in the consulted literature before selection criteria were applied.

KOW SW P0

TCDD 4/28 4/13 7/17

PeCDD 8/17 3/10 1/3

HxCDD 7/19 3/10 2/8

HpCDD 7/23 2/12 2/6

OCDD 9/40 5/13 3/12

DEHP 10/42 6/32 4/23

EDC 5/28 7/52 2/28

benzene 22/82 9/79 4/14
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Figure 2.2: Numbers of measurement values.
Histogram of the number of data in the selected data base for each of three physico-chemical parameters
and eight substances.

However Monte-Carlo analysis requires probability distributions for the most important
input parameters. Scarce data bases are a problem frequently encountered in probabilistic
uncertainty analysis. When information in form of data does not merit statistical analysis,
it may still be possible to apply methods utilizing additional information, such as expert
opinion.
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Table 2.3: Summary of parameter means.
Summary of ”best estimates” of parameter values. Means estimated in Berding et al. (2000) and in
this work, and selected values from Mackay et al. (1999) are shown. In the last column, the standard
deviation of the mean from this study is given. It is computed from the estimate of the variance, hence
the estimates are not very reliable for parameters with few measurements.

Substance Parameter selected value berding x̄ Lessmann x̄ sx̄ [%]

SW [mg/L] 1.90e − 05 1.65e − 04 8.92e − 05 85

TCDD P0 [Pa] 2.00e − 07 1.24e − 05 7.84e − 07 79

KOW 6.31e + 06 3.08e + 07 2.17e + 08 97

SW [mg/L] 1.20e − 04 1.18e − 03 1.26e − 04 16

PeCDD P0 [Pa] 5.80e − 08 6.96e − 07 1.00e − 06

KOW 2.50e + 07 2.84e + 09 3.20e + 09 41

SW [mg/L] 4.40e − 06 8.09e − 06 5.52e − 06 11

HxCDD P0 [Pa] 5.10e − 09 1.71e − 05 1.61e − 05 98

KOW 6.31e + 07 1.40e + 10 2.39e + 10 41

SW [mg/L] 2.40e − 06 1.12e − 04 2.48e − 06 3

HpCDD P0 [Pa] 7.50e − 10 1.71e − 06 4.50e − 06 99

KOW 1.00e + 08 1.18e + 11 3.09e + 11 44

SW [mg/L] 7.40e − 08 1.56e − 05 3.65e − 05 98

OCDD P0 [Pa] 1.10e − 10 6.20e − 06 3.82e − 06 67

KOW 1.59e + 08 8.08e + 11 2.06e + 12 66

SW [mg/L] 2.90e − 02 8.65e + 00 3.23e − 01 23

DEHP P0 [Pa] 1.90e − 03 2.55e − 04 2.25e − 04 94

KOW 3.02e + 07 3.51e + 08 1.09e + 08 71

SW [mg/L] 8.60e + 03 8.61e + 03 8.16e + 03 2

EDC P0 [Pa] 1.13e + 04 1.04e + 04 1.05e + 04 0

KOW 2.88e + 01 3.02e + 01 3.54e + 01 16

SW [mg/L] 1.76e + 03 1.77e + 03 1.70e + 03 2

benzene P0 [Pa] 1.27e + 04 1.26e + 04 1.26e + 04 2

KOW 1.32e + 02 1.52e + 02 1.63e + 02 7

SW [mg/L] 1.10e + 03 1.10e + 03

LAS P0 [Pa] 1.00e − 06 1.00e − 06

KOW 9.12e + 01 9.12e + 01

SW [mg/L] 5.00e + 02 5.00e + 02

EDTA P0 [Pa] 1.00e − 06 1.00e − 06

log KOW −3.34e + 00



Chapter 3

Methods

When performing uncertainty analysis using Monte-Carlo simulation, several issues need
to be dealt with. For each important input parameter a probability distribution reflecting
the uncertainty about the parameter needs to be determined, i.e. a distribution type and
a method of parameterizing it need to be selected. Input distributions then need to be
propagated through the model under consideration by Monte-Carlo simulation. In this
chapter, the necessary methods in probability theory, parameter estimation, and Monte-
Carlo simulation, and the model under consideration are presented.

3.1 Terms from Probability Theory

In the following section, a few terms from probability theory are introduced. More detailed
definitions can be found in reference works such as Sachs (1992).

The outcome of a random experiment (such as tossing a coin, determining the weight of
a random person, or measuring vapor pressure of benzene) is called an event. A random
variable maps events to numbers. Probability distributions assign probabilities to the
values of a random variable. In the discrete case, the probability distribution may be
tabulated or given through an equation. In the continuous case, the domain of a random
variable is a subset of the real line, and the probability of any single value of the random
variable is zero.

Probability Distributions

Probability distributions can then be defined by their probability density function (PDF),
or their cumulative distribution function (CDF). The PDF assigns a probability density
to each event. The probability of a range of values is defined as the integral of the PDF
over that range. The CDF F (x) gives the integral of the PDF f(x) with the lower bound
at negative infinity: F (x) =

∫ x
−∞ f(x) dx. Hence F (x) denotes the probability of all values

less than x.

While PDF and CDF describe a probability distribution in all detail, there is a variety of
summarizing measures that characterize different aspects of a distribution. For example,
there are measures of the location, the spread, and the shape.
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Measures of Location

The location of a distribution is its central tendency, it describes where the ”middle” of the
distribution is located. The distribution mean or expected value E(X) =

∫ ∞
−∞ xf(x) dx

where f(x) is the PDF of X, is the average value of the distribution. Given a random
sample {xi} of a distribution, the sample mean x̄ = n−1 ∑n

i=1 xi is an unbiased1 estimator
with minimum variance.2

The median is the 50th percentile of a distribution. A percentile marks the value before
which the corresponding percentage of probability mass is located, i.e. if x50 is the 50th

percentile of a random variable X, then F (x50) = 0.5 where F is the CDF of X. Hence it
is a property of the median, that values both larger and less than the median are equally
likely. The mode of a distribution is the most likely value, i.e. the value with maximum
probability density.

Measures of Spread

The spread or variation of a distribution is mostly measured by variance and standard
deviation, or the coefficient of variation. The variance is defined as the expected square
deviation from the mean Var(X) = E[(X − µ)2] =

∫ ∞
−∞(x − µ)2f(x) dx where µ is the

mean value of X, and the standard deviation is its square root. The coefficient of variation
(CV) is the ratio of standard deviation and mean (CV = σ/µ), hence giving a relative
measure of the spread. The sample variance s2 = (n − 1)−1 ∑n

i=1(x − x̄)2 is a minimum
variance unbiased estimator of the variance.

Measures of Shape

The shape of a distribution is distinguished after its skewness and its kurtosis. A probabil-
ity distribution that is not symmetric is said to be skew. The skewness may be measured
by the coefficient of skewness. When the right tail of the distribution is flatter then the
left tail, the skew of the distribution is positive. The distribution is then said to be skewed
to the right. Likewise, negatively skewed distributions are skewed to the left. The coeffi-
cient of kurtosis measures how much the shape of the distributions deviates from the bell
shape of a normal distribution.

Central Moments

Mean, standard deviation, and coefficients of skewness and kurtosis form a consistent set
of measures, because mathematically they are the first, second, third, and forth moment
about the mean, respectively.

1An estimator is unbiased if its expected value equals the true value of the estimated parameter.
2The fact that there is a theoretical lower bound for the variance of an estimator can be exploited to

show that some estimators cannot be bettered.
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Tukey’s 5k Rule

J.W. Tukey states the following rule of thumb for estimating moments of a distribution:
the calculation of the kth moment ought to be based on 5k observances, i.e. estimates of
the mean should be based on more than five measurements, estimates of the variance on
25 measurements or more, and so on (as found in Sachs, 1992, p. 172). Hence when data
are scarce, the use of statistics for parameterization becomes particularly problematic for
higher order moments such as the variance.

3.2 Selection of Probability Distributions

In probabilistic exposure assessment, uncertainty about input parameters is represented
by probability distributions assigned to the parameters. Ideally, distributions are selected
and parameterized to reflect the state of knowledge of that particular parameter, in other
words, the decision for a distribution type ought to utilize all available information. When
only limited information is available the selected distribution type should be the ”widest
distribution family consistent with the state of knowledge” (USEPA, 1997). Seiler and
Alvarez (1996) argue that compliance with the scientific method3 implies that no distri-
bution is selected ”that implies a knowledge that cannot be backed up by theoretical or
experimental knowledge.”

3.2.1 Maximum Entropy Inference

These thoughts are also in agreement with the maximum entropy principle (MaxEnt).
MaxEnt takes its name from the entropy H of a distribution, defined as

H = −
∫

p(x) log(p(x))dx (3.1)

where p(x) is a probability density function. H is a measure of the information contained
in p(x). When H is maximized under constraints imposed by the available information
about a parameter, a distribution of maximum uncertainty is found, which is consistent
with the information given (Theil and Fiebig, 1984).

It is instructive to consider the discrete analog of equation 3.1, following Theil and Fiebig
who give a comprehensive introduction to MaxEnt inference. In the discrete case, the
entropy H is defined as

H = −
N

∑

i=1

pi log(pi)

When pi is considered the probability that event i occurs, then the message that event
i has indeed occurred contains information. The amount of information depends on its
probability pi. If event i is likely, e.g. pi = 0.95, then there is little information in the
message indicating its occurrence. If, however, the probability of event i is pi = 0.01, say,
then the message is a surprise and quite informative. Hence it is sensible to associate

3For a definition of the term scientific method as used in this work, see footnote 1 on page 17.
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high informational content with low probabilities. In statistical information theory the
information h of the message that an event with probability p has occurred is h(p) =
− log(p). h is infinite at p = 0 and decreases to 0 at p = 1.

Furthermore, H then defines the expected information of a message, given a discrete
probability distribution pi of probabilities of all messages. The expected information
relates to the uncertainty represented by the distribution as ”two sides of the same coin”:
the higher the expected information of a message, the greater the uncertainty before the
message is received.

In Table 3.1 there is a summary of maximum entropy distributions of importance in this
study. Vose (2000) and Cullen and Frey (1999) introduce MaxEnt inference as a method
to derive parameter distributions for probabilistic analysis.

3.2.2 Other Selection Criteria

Selection of a distribution family4 is guided by the available information. The available
information may differ in its nature, e.g. there may be empirical data, theoretical con-
siderations, or miscellaneous kinds of expert knowledge. In many cases there will be a
mixture of different information.

Statistical analysis of empirical data is the most frequently used method (Hamed and
Bedient, 1997), and also preferable over eliciting expert opinion to derive subjective dis-
tributions (Morgan and Henrion, 1990). However, the required amount of data (”several
thousands”, Slob, 1994) are not always available.

Among the theoretical considerations to guide a selection are the bounds of the parameter,
symmetry or skewness and its direction, and any mechanistic basis of the parameter, e.g.
physical, chemical, or biological processes (USEPA, 1997).

Parametric and Non-Parametric Distributions

The information that is available to base the selection of a distribution family on, may
differ in the amount of information as well as in the kind of information. The availability
of information has an impact on which distribution families are suitable to represent
parameter uncertainty. It is useful to divide probability distributions into two classes for
this argument.

Probability distributions can be categorized into parametric distributions and non-para-
metric distributions. The terms ”parametric” and ”non-parametric” are taken from Vose
(2000, p. 272). Parametric distributions are distributions whose shape is a mathematical
function of one or more distribution parameters. Often, the shape of a parametric distri-
bution is not intuitive nor obvious from the defining parameters. Examples of parametric
distributions are normal and lognormal distributions, and the beta distribution.

4The term distribution family is used synonymical with the term distribution type to refer to all
distributions defined by one equation and a set of variable parameters.
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Table 3.1: Summary of some distribution possessing maximum entropy.

distribution constraints1 source

uniform lower and upper bound Vose (2000); Cullen and Frey (1999)

triangular lower and upper bound, mode Cullen and Frey (1999)

normal2 mean, standard deviation Cullen and Frey (1999)

beta lower bound, upper bound,
mean, standard deviation

Cullen and Frey (1999)

1 Constraints are mathematical conditions implied by knowledge of certain facts, e.g. knowledge that
a quantity is never negative implies a lower bound of zero.

2 As a random variable is lognormally distributed when its logarithm is normally distributed, this
implies that the lognormal distribution also has maximum entropy in this sense.

Non-parametric distributions have their shape defined by their parameters directly. An
example is the uniform distribution, where the two parameters needed specify the lower
and the upper bound of the probability density function.

While this classification is helpful, it should be kept in mind that the mathematical
parameters of a parametric distribution may be computed from parameter sets that do
have an intuitive appeal, and that shape parameters of non-parametric distributions may
be computed from mathematical characteristics such as mean and standard deviation.
Examples of both of these cases will occur in the following sections.

Statistical Analysis versus Expert Opinion

Whether a parametric distribution may well be used, or whether one ought to select a
non-parametric distribution depends on the kind and the amount of information available.
The available information determines the possible ways of parameterizing a distribution.
Parametric and non-parametric distributions differ in the ease of parameterization.

In cases of large amounts of empirical data, statistical analysis may be used to estimate
distribution parameters. For many parametric distributions there are estimators for their
parameters, hence a parametric distribution may be parameterized using parameter esti-
mation. This seems to be the ideal approach for numerous reasons. There is mathematical
theory to back up parameterization in this case, parameterization is transparent and ob-
jective to a high degree. Notice though that there is subjective judgment even beforehand
in the selection of the data, the selection of a distribution family, and the estimators of
its parameters.

In cases of little or no empirical data, expert opinion is likely to be used for distribution
parameterization. Here, non-parametric distributions are apt, because the shape of the
distribution is directly and intuitively influenced by the parameters. It is often difficult to
get the precise shape right with parametric distributions, i.e. to reflect the expert opinion
in an appropriate way.
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In the following sections, four distribution families are introduced and discussed that are
frequently used in Monte-Carlo analysis: lognormal distribution, triangular distribution,
beta distribution, and uniform distribution.

3.2.3 Lognormal Distribution

A random variable is lognormally distributed with parameters µ and σ, if its logarithm
follows a normal distribution with the same parameters, i.e. µ is the mean of the logarithms
and σ their standard deviation (Figure 3.1). The probability density function (PDF) of
the lognormal distribution (denoted L(µ, σ)) is given by the following equation (Aitchison
and Brown, 1957):

f(x) =
1√

2πσx
exp

{

1

2σ2
(ln x − µ)2

}

The mean mL and variance s2
L of the lognormal distribution can be computed from the

following equations (Sachs, 1992):

mL = eµ+σ
2

2 (3.2)

s2
L = e2µ+σ2

(

eσ2 − 1
)

(3.3)

The lognormal distribution is one of the most widely used distributions in probabilistic
assessment (Cullen and Frey, 1999). There is a number of reasons for this.

First, there are theoretical considerations to use lognormal distributions a priori. Many
quantities are restricted to non-negative values, one example are physico-chemical prop-
erties of chemicals. The range of lognormal distributions (zero to infinity) is in agreement
with this, unlike i.e. the range of normal distributions (-infinity to infinity). Furthermore,
it is known from the central limit theorem in probability theory that the product of a
large number of random variables has lognormal distribution.5 Therefore, if one assumes
the real world to be roughly multiplicative, the central limit theorem implies that uncer-
tainties about real world quantities will be lognormally distributed (Slob, 1994; Cullen
and Frey, 1999). The maximum entropy principle (MaxEnt) provides another theoretical
consideration. When the mean µ and the standard deviation σ of a random variable are
known, i.e. they are given as constraints for MaxEnt inference, then the normal distri-
bution is the widest distribution still consistent with this knowledge. In this sense, the
lognormal distribution with parameters µ and σ is a MaxEnt distribution.

Secondly, there are empirical considerations. Lognormal distributions have often been
found to be a good description of data from non-negative physical entities (Slob, 1994).
This can also be viewed as evidence to the claim that the real world is roughly multiplica-
tive.

Additionally, the use of lognormal distributions can make the analytical analysis of un-
certainty propagation through a model easy. Slob (1994) presents how in purely multi-
plicative models, the variance of the target distribution can be computed via equations

5Originally the central limit theorem states that the distribution of sums of random variables converges
to a normal distribution when the number of addents becomes large. When logarithms are taken, the
sums of random variables become products of random variables and the resulting normal distribution
becomes a lognormal distribution.
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Figure 3.1: Lognormal distribution.
Lognormal distribution L(µ = −0.2, σ = 0.63) with mean mL = 1 and standard deviation sL = 0.7

(Figure 3.1). Vertical lines indicate the mode at eµ−σ2

, the median at eµ, and the mean at eµ+σ2

. These
measures of the distribution location are further apart when σ becomes large, their relative order stays
the same.

in closed form that may easily be derived from the model equation. Another example
is given in MacLeod et al. (2002). They derive a relationship between input- and out-
put uncertainties by assuming lognormal distributions along with independence of input
parameters and linear relationships of inputs and outputs.

Parameterization of the Lognormal Distribution

The lognormal distribution is defined by parameters µ and σ of the normal distribution.
The mathematical nature of these parameters puts the lognormal distribution in the class
of parametric distributions, apt for parameterization via parameters estimation.

The parameters µ and σ are best estimated as the arithmetic mean and arithmetic stan-
dard deviation of the logarithms of the data, µ̂ = n−1 ∑

ln xi, where xi are the available
data, and n is their number, and similarly σ̂ = (n − 1)−1 ∑

(ln xi − µ̂)2 (Aitchison and
Brown, 1957). Estimators µ̂ and σ̂ are minimum variance unbiased estimators.6 It is
possible to estimate the mean mL and the variance s2

L of the original data directly. Using
the Equations 3.2 and 3.3, the corresponding parameter values µ and σ could then be
computed.7 Crow and Shimizu note that ”the parameter estimates resulting from the
inverse transformation are biased” (Crow and Shimizu, 1988, p. 2). Therefore, this pro-
ceeding should be avoided. When estimates of the mean mL and standard deviation sL of
the lognormal distribution are needed despite this, special estimators derived by Finney
ought to be used (detailed descriptions can be found in Aitchison and Brown, 1957; Crow
and Shimizu, 1988). In conclusion, the preferable way to estimate the parameters of the

6An estimator with little systematic error (in the sense that its expected value equals the true value
of the parameter) is called unbiased. A minimum variance unbiased estimator is an unbiased estimator
that has the smallest variance theoretically possible.

7This proceeding is not recommended, but since these conversions are useful in other situations, the
equations are given. Parameters µ and σ of the lognormal distribution can be computed from the mean
mL and standard deviation sL as follows:

µ = −1

2
ln

s2
L + m2

L

m4
L

σ =

√

2 ln

√

s2
L + m2

L

mL
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lognormal distribution is the arithmetic mean µ̂ and standard deviation σ̂ on logarith-
mic scale, or equivalently, the logarithm of the geometric mean or geometric standard
deviation.8

More Intuitive Parameterization

Lack of intuitiveness of the parameters µ and σ is a drawback when lognormal distribu-
tions are parameterized by utilizing expert knowledge, as opposed to statistical analysis.
When logarithms of the data are taken (e.g. when estimating µ and σ) their dimension
is lost, which diminishes the meaning and interpretability of the parameters (Slob, 1994).
Moreover location and spread of the lognormal distribution depend on both, µ and σ.
This is evident from equations 3.2 and 3.3. It makes it difficult to get the shape of the
distribution match any expert opinion.

To help this, Slob (1994) proposes to parameterize lognormal distributions via the median
M and the coefficient of variation (CV, CV = sL

mL

) as parameters. Relationships of median
and lognormal parameter µ, and CV and lognormal parameter σ are given by the following
equations.

CV =
√

eσ2 − 1 (3.4)

M = eµ (3.5)

When µ and σ are computed from the inverse relationships of equations 3.5 and 3.4,
respectively, then they only depend on either the median or the CV.

The CV is a relative measure of uncertainty and therefore intuitive. Also relative to the
location of the distribution is the dispersion factor k of a distribution. The dispersion
factor describes two bounds, M/k and kM , that enclose 95 percent of the probability
mass of the distribution.

P
(

M

k
< X < kM

)

= 0.95 (3.6)

k = e
1.96

√

ln(CV2
+1)

= e1.96σ

When lognormal distributions are parameterized via the median and either the CV or
the dispersion factor, the impact of different parameter values on the distribution shape
becomes more obvious and intuitive. Hence these modifications by Slob adjust the log-
normal distribution for the use of expert opinion and the parameterization of subjective
distributions.

However, some important characteristics of the distribution such as the location of its
mode, are not directly specified, and may not accurately reflect expert opinion.

8The geometric mean is defined as (
∏n

i=1 xi)
1

n . It follows that ln (
∏n

i=1 xi)
1

n = 1
n

ln
∏n

i=1 xi =
1
n

∑n

i=1 lnxi = µL.
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Keeping the Mean or the Median Fixed

In the literature cited in this study, the approaches taken to parameterize lognormal
distributions differ in particular in respect to whether the mean or the median is used to
characterize the location of the distribution.

McKone et al. (1995) compute the arithmetic mean to parameterize lognormal distribu-
tions. Similarly, Berding (2000, p. 123) parameterizes lognormal distributions using the
mean of at least 25 values. Hamed and Bedient (1997) investigate the influence of the
shape of input distributions on several characteristics of the computed target distribution.
While they are using different distribution types (normal, lognormal, and uniform distri-
butions), they always use the same mean and standard deviation ”in order to preserve
the probability content of the distributions.”

Examples of the use of the median are Slob (1994), Beyer and Matthies (2001), and Jager
et al. (1997). In his reference book of applied statistics, Sachs (1992, p. 155) recommends
the median in cases of sparse data, unsymmetric distributions, possible outliers, ranked
data, and distributions with open classes at the end of their range. The first three
indications frequently apply in probabilistic assessment. Unsymmetric distributions are
often assumed when a quantity is bounded, e.g. when it cannot be negative. Monte-Carlo
analysis is likely to produce some very large values that are few in number and can be
considered outliers when input uncertainties are large.

When a distribution is parameterized using expert judgment, either the mean or the
median may be used as a parameter. At a fixed mean or median, different uncertainties
imply different distributional shapes. The impact of uncertainty on the shape differs
depending on the kind of parameter used. Figure 3.2 shows examples where different
CV are combined with a fixed mean or a fixed median. In Figure 3.2 four settings of
parameterizing lognormal distributions are explored. In all cases, the CV varies from 0.3
to 3.0. For the two plots in the left column a fixed median was used, while in the right
column the mean was kept at one value. In the top row median and mean are set to 1.0,
in the bottom row, median and mean are set to 100.

The top and the bottom row show the same pattern in the plots, except that plots in the
bottom row are stretched by a factor of 100. Notice that the probability density decreased
likewise to 100th of the value in the top row. This shows that the results are similar at
different orders of magnitude an could hence be extended to all values of mean an median.

For low CV values, the curve of the lognormal PDF is almost bell shaped. Mean and
median are close to each other, and there is little difference between using one or the
other. When CV increases, the mode of the lognormal distribution shifts towards the left,
and in case of a fixed mean a narrow peak is formed close to the y-axis, which can be
explained as follows.

When the CV increases at a fixed mean, the standard deviation increases accordingly.
The standard deviation is a function of the probability density function, weighted with
the distance from the mean.9 Hence, a large standard deviation implies that much of the
probability mass is far away from the mean. At the same time, the mean is the center of

9Variance of a continuous random variable Var(X) =
∫ ∞

−∞
(x−µ)2f(x) dx where f(x) is the lognormal

PDF
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Figure 3.2: Different shapes of lognormal distributions.
Examples of different CV combined with either a fixed mean or a fixed median. Four settings of param-
eterizing lognormal distributions are explored. In all cases, the CV varies in steps of 0.3 from 0.3 to 3.0.
For the two plots in the left column a fixed median was used, while in the right column the mean was
kept at one value. In the top row median and mean are set to 1.0, in the bottom row, median and mean
are set to 100.

the distribution in the sense that equal amounts of weighted probability mass lie on both
sides of it.10 Since the range of the lognormal distribution is bounded at zero, the distance
of the probability mass on the lower side of the mean is also bounded. When the distance
of probability mass increases on the upper side of the mean, then an increasing share of
the total amount of probability mass is accumulated on its lower side, as far away from
the mean as possible, i.e. close to the y-axis, hence creating a narrow peak in the PDF.
This argument is not limited to the lognormal distribution, in fact the accumulation of
probability mass at the y-axis may be expected for any distribution ranging from zero to
infinity.

The percentiles of the distribution in particular will reflect these tendencies, because they
indicate points, up to which a certain amount of the total probability mass is spread
out. For example, the 50th percentile indicates the point before which half the probability
mass is found. When uncertainties become large, all percentiles (with the exception of
the 100th percentile) decrease. In fact, their limits are zero when the CV approaches
infinity.11 Figure 3.3 shows two plots of the 90th percentile, the 10th percentile and the

10The integral definition of the mean E(X) =
∫ ∞

−∞
xf(x) dx shows how the mean is an integral of the

PDF, weighted with the x-value
11Using a computer algebra system it can easily be verified that limsL→∞ x99(mL, sL) = 0, where x99

is the 99th percentile, sL denotes standard deviation, and mL denotes the mean.
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mean of the lognormal distribution as a function of the CV, keeping the mean fixed in
one (Figure 3.3A) and keeping the median fixed in the other (Figure 3.3B). The CV is
varied from 0 to 20. In Figure 3.3A, there is an increase of the 90th percentile only in the
range from 0 to 2. It can be argued that a large uncertainty should be represented by
a broad range of the distribution in terms of values that lie inbetween the 10th and 90th

percentile. This plot indicates that keeping the mean fixed prohibits such broad ranges.
To prevent this, no CV larger than 2 ought to be used in combination with a fixed mean.
Furthermore, judging from Figure 3.2 lognormal curves possess an intuitive shape only
for CV less than 1.

These kind of problems do not occur when the median is chosen to parameterize the
distribution from expert opinion. The resulting shapes of the lognormal PDF, shown in
Figure 3.2, left column, do not exhibit a comparable peak at the y-axis, although in this
case, too, the mode of the distribution is far to the left of the median.

The plot of the lognormal percentiles, in Figure 3.3, displays a completely different be-
havior in case of a fixed median (B) as opposed to having a fixed mean (A). The 90th

percentile increases monotonic with the CV. In fact the limit of the 90th percentile can
be shown to be infinite.

Hence, when the median is used, even at large uncertainties the behavior of the per-
centiles is more consistent with the expectation that at large uncertainties the bulk of
the probability mass is spread out over a large range. Notice though that in Figure 3.3
the mean increases beyond all limits as well. When such distributions are used in Monte-
Carlo analysis, this should be kept in mind when analyzing the mean of computed target
distributions.

3.2.4 Triangular Distribution

The shape of the triangular distribution is determined by three parameters a, b, and
H. Parameters a and b denote the lower and the upper bound, respectively, H sets the
position of the mode (Figure 3.4). The distributional shape is determined directly by these
parameters, hence the triangular distribution is a non-parametric distribution, suitable to
represent expert opinion. In fact, the triangular distribution is the most commonly used
distribution to represent expert opinion (Vose, 2000, p. 273).

Reasons for this might be that minimum, maximum, and a most likely value are the
most basic information to ask an expert, and correspond directly to the distribution
parameters. According to Cullen and Frey (1999), there is also a theoretical foundation:
the triangular distribution is the MaxEnt distribution in cases where lower and upper
bounds of the distribution range, and the mode are known.

The mean mT and standard deviation sT of the triangular distribution are computed from
the parameters using the equations

mT =
a + H + b

3
(3.7)

s2
T =

a2 + H2 + b2 − aH − ab − Hb

18
(3.8)
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Figure 3.3: Percentiles of lognormal distributions.
Plot of the 90th, the 10th percentile and the mean of the lognormal distribution. The CV is varied from
0 to 20. In plot A, the mean is kept fixed at one, in plot B, the median is kept fixed at one. While in
plot B the range encompassed by 10th and 90th percentile increases with the uncertainty represented by
the CV, this range decreases in plot A.

a H b

Figure 3.4: Triangular distribution.
Triangular distribution T (a,H, b) where a and b denote the lower and upper bounds, and H is the position
of the mode.

The mean mT always falls in the middle third of the range (a, b). When a and H coincide,
then the mean is given by

2a + b

3
=

3a + b − a

3
= a +

1

3
(b − a)

Hence the distance of mean and lower border is always at least a third of the total range
of the triangular distribution (Figure 3.5). This implies that the mean tends to be large
when the upper bound is uncertain (and hence chosen to be large), even if both, the mode
and the lower bound are set to low values. As a consequence, the coefficient of variation of
the triangular distribution is bounded. When triangular distributions are parameterized
with large standard deviations, the large upper bound implies also a large mean value.
The maximum CV for triangular distributions is (

√
2)−1 ≈ 0.7.12 Vose (2000) cautions to

use the triangular distributions when maximum values are difficult to determine.

While the triangular distribution may give an accurate description of the state of knowl-
edge about a parameter, it hardly is a realistic estimate of the actual distribution of the
uncertainty of a parameter. The sharp edges of this distribution are unlikely to accu-
rately represent any uncertainty from a physical, chemical, or biological process (Cullen

12This follows from limb→∞ CVT (a,H,b) = 1√
2
.
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1/3 1/2 2/3

Figure 3.5: Mean and mode of triangular distribution.
Triangular distributions with the mode at the lower bound, at the center, and at the upper bound. The
mean of the triangular distribution always falls within the middle third of the range from lower to upper
bound, regardless of the location of the mode.

and Frey, 1999). The existence of the three discontinuities at a, b, and H and the the
choice of their position need to be backed up by some information, in order to be con-
sistent with the scientific method (Seiler and Alvarez, 1996). A lack of such information
would not imply a single most likely value, but rather a trapezoid shape of the distri-
bution. Seiler and Alvarez recommend the beta distribution over the triangular and the
uniform distribution (discussed below).

3.2.5 Beta Distribution

The beta distribution is a parametric distribution, it is defined by two so-called shape
parameters α1 and α2. The PDF is (Cullen and Frey, 1999, p. 69):

f(x) =
xα1−1(1 − x)α2−1

B(α1, α2)
, for 0 ≤ x ≤ 1, and α1, α2 > 0

where B(α1, α2) = Γ(α1)Γ(α2)Γ(α1 + α2)
−1, and Γ(x) denotes the Gamma function.

Both, Vose (2000) and Cullen and Frey (1999) give equation by which beta distributions
can be modified for parameterization from more intuitive parameters than the shape
parameters α1 and α2. Vose introduces the PERT distribution PERT(a, b, c, γ), where a
and c are minimum and maximum of the beta distribution, b is its mode, and γ has an
impact on the standard deviation. Using equations for α1 and α2 given in Cullen and
Frey (1999, p. 164), a beta distribution can be found to fit a lower and upper bound,
a given mean and a given standard deviation. Figure 3.6 shows variations of the PERT
distribution.

When values for upper and lower bounds, mean and standard deviation are given, the
beta distribution possesses maximum entropy. Compared to the triangular distribution,
one additional piece of information is needed, the standard deviation. Other than the
triangular distribution the beta distribution is smooth, i.e. there are no discontinuities.

When upper and lower bounds are fixed, there is a limit to the spread that a distribution
can possibly represent. With increasing standard deviation, the beta distribution con-
verges towards the uniform distribution (Seiler and Alvarez, 1996). Physical properties of
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Figure 3.6: Beta and PERT distributions.
The left plot shows PERT distributions with different locations of the mode to illustrate how beta
distributions can be used as ”smooth triangular” distributions. The right plot shows PERT distributions
with the same mode, but different standard deviations, which makes beta distributions more flexible than
triangular distributions.

chemicals rarely have no upper limit. The beta distribution is more realistic with respect
to this than the lognormal distribution.

3.2.6 Uniform Distribution

The parameters of the uniform distribution, a and b, define the lower and upper bounds
of the distribution, respectively. The PDF is:

f(x) = (b − 1)−1 for a ≤ x ≤ b

The mean mU and standard deviation sU of the uniform distribution are:

mU =
a + b

2
(3.9)

sU =
(b − a)2

12
(3.10)

It follows from these equations that the lower and upper bounds, a and b, may be set
from mU and sU as a = mU −

√
3 sU and b = mU +

√
3 sU .

When the uniform distribution is used to model a non-negative quantity, the lower bound
a is non-negative. If this restriction is taken into consideration, a maximum coefficient of
variation CVmax can be computed:

mU −
√

3 sU > 0

mU >
√

3 sU

sU

mU

< (
√

3)−1 ≈ 0.58 = CVmax

The existence of such a limiting value should be kept in mind, particularly when comparing
different distribution types.

The uniform distribution is the MaxEnt distribution when only minimum and maximum
values of a parameter are known. Like the triangular distribution, it is almost exclusively
used to model expert opinion, and similar criticism about its sharp edged shape applies.
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a b

Figure 3.7: Uniform distribution with lower bound a and upper bound b.

3.3 Monte-Carlo Simulation

Monte-Carlo simulation is a numerical method to propagate probability distributions
through a model. It is frequently used to perform uncertainty analyses. Its main idea is
to estimate the distribution of a target13 value of the model statistically by sampling the
universe of all possible target values.

A possible target value, e.g. soil concentration, can be calculated from a set of model
parameters by sampling each probabilistic parameter according to its probability distri-
bution. This is usually referred to as performing a Monte-Carlo shot (or trial in Crystal
Ball R© terminology). A random sample of the target distribution of size n is produced by
calculating n Monte-Carlo shots.

The resulting random sample of the target value is then subject to statistical analysis,
e.g. mean and variance may be estimated from the sample mean and sample variance,
respectively. Statements about the shape of the target distribution can be derived by
fitting theoretical distributions to the sample and performing goodness-of-fit tests (Deci-
sioneering Inc., 1999, p. 138). Furthermore, target distributions can be characterized and
compared via their percentiles.

Sampling from the input distributions is either done by simple random sampling or latin
hypercube sampling. The latter guarantees that values from the entire range will be
sampled by dividing it up into subranges of equal probability and then drawing from
these subranges (Cullen and Frey, 1999, p. 209). Latin hypercube sampling is considered
to be more efficient, because a lower number of samples is needed to cover the entire
parameter space.

3.4 The SimpleBox Model

SimpleBox is a level 3 model, i.e. it assumes continuous input (emissions) and output
(degradation), steady state, and resistances between compartments (hence no thermody-
namic equilibrium) (Trapp and Matthies, 1998).

13The term target refers to the model output of interest.
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Figure 3.8: SimpleBox flows.
Overview of compartments and processes of the SimpleBox model. Adapted from EC (1996)

Computations in this study are performed with the SimpleBox model (van de Meent,
1993; Brandes et al., 1996) for a number of reasons. The European Union System for
the Evaluation of Substances (EUSES) is a model system that covers both sides of the
risk assessment process, the effects assessment and the exposure assessment following
EC (1996). It incorporates modules for estimating PEC and PNEC, and computes their
quotient (RCR) to indicate any existing risks. Descriptions of the individual modules and
their interaction can be found in Berding (2000). Within this framework, SimpleBox is
the multimedia model that computes background concentrations in air, water, sediment
and three sorts of soil: agricultural soil, industrial soil, and natural soil (Figure 3.8).
The soils differ in some characteristics, particularly in emissions. There is direct emission
into industrial soil, no emission into natural soil and emission via sewage sludge into
agricultural soil.

The Excel R© spreadsheet version of SimpleBox implemented by Berding (2000) is used in
this study with few modifications. The spreadsheet was modified so that care is taken
that fractions, e.g. the volume fractions of water and solid matter in sediment, always
add up to one.14 Furthermore, volatilisation rates must not become infinite. The largest
modification is a technical one: additional substance data tables enable providing multi-
ple scenarios with different input distributions, in particular different distribution types.
The latter were introduced for convenience, but it should be noted that automating the
parameterization of the spreadsheet model enables reproducing simulation results. As in
Berding et al. (2000), the Crystal BallR© software package is used to perform Monte-Carlo
simulations of the spreadsheet model (Decisioneering Inc., 1999).

14Fractions can fail to add up to one in probabilistic simulation, when uncertain fractions are set to
random, conflicting values. The conflict is solved by normalizing conflicting fractions using their sum.



Chapter 4

Results and Discussion

In a broad sense, sensitivity analysis encompasses all dependencies of computed target1

distributions on input distributions i.e. parameter distributions. In other words, the effects
of varying characteristics of input distributions on characteristics of target distributions
are studied. The moments of probability distributions are a set of consistent charac-
teristics, and are chosen here as measures of the location, dispersion and shape of the
probability distributions. Table 4.1 summarizes possible dependencies between aspects of
input and output distributions in terms of moments, and in which context they are at
least partially addressed.

Classical Sensitivity Analysis

Changing an input parameter affects the mean (1. moment), variance (2. moment) and
the shape (higher order moments) of the target distribution (Table 4.1). Classical sensi-
tivity analysis investigates the effect on the location of the target distribution by applying
deterministic local methods, e.g. differential analysis of the model equations (Saltelli et al.,
2000). The dependency of the location of the target distribution on the location of the
input distribution is bound to behave similar to the deterministic case. Hence results from
sensitivity analysis performed in Berding et al. (2000) give an insight how changes of the

1As in the previous sections, the term target refers to the target of the computation, i.e. substance
concentration in any of the four compartments soil, water, sediment and air.

Table 4.1: Overview of input/output dependencies.
The referenced sections address selected aspects of the dependencies. Section 3.2.3 discusses the effects
on the distributions shape in the context of different parameterization approaches.

moment of moment of target distribution

input distribution mean (first moment) variance (second) shape (higher order)

mean classical sensitivity analysis

variance Section 4.1 Section 4.7
Section 3.2.3

shape Section 4.3 Section 4.4 Section 4.5

49
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input distribution’s location affect the location of the target distribution. The location
of the input distribution also has an impact on the target variance: whether the input
location falls within a sensitive or an insensitive region of the parameter space determines
the impact of the input variance on the output variance (Beyer and Matthies, 2001).

Thus, by analyzing the local sensitivity for different parameter settings (scenarios) one
also gets an idea of how different input mean values relate to the variance of the output
(Beyer and Matthies, 2001). The effect of the input distribution’s mean on the resulting
mean and variance is therefore not further analyzed in this work.

4.1 The Influence of the Dispersion of the Input Distri-

bution on the Location of the Target Distribution

In the simple case of a sum of two random variables X1 and X2 with normal probability
distributions, the target mean does not depend on anything but the input means. It is
computed as follows (Sachs, 1992, p. 144):

E(X1 + X2) = E(X1) + E(X2)

Thus in this case, the mean of the distribution of the sum may be calculated determin-
istically from the mean values of the summands. However this result does not hold in
general.

In general, the deterministic output value calculated with the mean values of the input
distributions differs from the mean value of the target distribution computed by a full
probabilistic assessment. In other words, the input means are not directly mapped to the
results, because the resulting mean is affected by other properties of the input distribu-
tions. The mean value calculated by propagating the entire probability density function
(PDF) can be larger or smaller than the corresponding deterministic result (Figure 4.1).
Hence, by performing Monte-Carlo simulations the mean gets ”shifted” to the right (pos-
itive shift) or to the left (negative shift) of the deterministic calculation.

Positive Shift

Positive shifts in the above sense can be understood analytically in case of a specific
situation. Two lognormally distributed input parameters occurring in the numerator
and the denominator of a quotient in the model equations result in a positive shift of
the mean. Let X1 and X2 be two random variables with lognormal distributions, i.e.
X1 → L(µ1, σ

2
1) and X2 → L(µ2, σ

2
2), where L denotes the lognormal distribution and µ

and σ2 are mean and variance of lnX1 and ln X2. Then the distribution of the quotient
X1/X2 is distributed as (Crow and Shimizu, 1988):

X1

X2

→ L(µ1 − µ2, σ
2
1 + σ2

2)
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Figure 4.1: Probabilistic means versus deterministic calculation.
Comparative plots of the distribution mean computed via Monte-Carlo simulation, and the deterministic
target value computed by taking the distribution means as deterministic model input. In case of TCDD
concentration in soil, the deterministic target value is less than the probabilistic mean, while in case of
LAS concentration in sediment it is larger. Simulations were performed with scenarios from Berding et al.
(2000).

Hence, the expected value of the quotient, which is equivalent to the mean derived by
probabilistic calculation, is given by the following equation:

E
(

X1

X2

)

= eµ1−µ2+
σ
2
1
+σ

2
2

2

In contrast, here is the quotient of the input distribution means, which is equivalent to
the deterministic calculation:

EX1

EX2

=
eµ1+

σ
2
1
2

eµ2+
σ2
2
2

= eµ1−µ2+
σ
2
1
2
−σ

2
2
2

Therefore, the expected value of the quotient E(X1/X2) is larger than the quotient of the
means EX1/EX2 by a factor of eσ2

2 .

Lognormally distributed parameters in quotients are common in SimpleBox scenarios,
and hence the effect described above is bound to occur. However the impact of the effect
still depends on the relative sensitivity of the concerning parameters and the uncertainty
about them.

Negative Shift

In case of LAS concentration in sediment there is a negative shift of the probabilistic result
compared to the deterministic calculation with the input distribution means. Analyzing
the corresponding SimpleBox model equations is an arduous if not impossible task in this
case. However, negative shifts could be reproduced in numeric simulations for several
simplified equations.

In particular there was a negative shift in case of two lognormal parameters in the following
functional dependency to a model output: Y = (X−1

1 + X−1
2 )−1. This kind of functional

dependency does occur in the corresponding scenarios.
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Conclusion

There are mathematical considerations that imply that the expectation of any target value
is not the same as the result of a deterministic calculation using the distribution means.
This needs to be kept in mind particularly when comparing results from probabilistic and
deterministic simulations.

4.2 Parameterization

Before Monte-Carlo simulation can be performed to assess the impact of different shapes
of parameter distributions, suitable scenarios have to be defined. The aim of this section
is to parameterize scenarios with input distributions that differ solely in their shapes, and
are yet as close to realistic scenarios as possible.

Characteristics of Probability Distributions

Probability distributions are characterized by their location, their dispersion, and the
shape of the distribution function. In the following sections, the mean and the standard
deviation are selected as measures of the location and the spread, respectively. The mean
and the variance are the first and the second moment about the mean. Together with
the coefficients of skewness (third moment) and kurtosis (fourth moment) they form a
consistent set of measures to characterize probability distributions (Section 3.1). An
additional advantage of this choice is that it makes the results of the following sections
comparable to theoretical results about moments in probability theory, e.g. theorems
about expected values and variance of linear functions of random variables.

Alternative choices for measures of location and spread are the median and the coefficient
of variation, respectively. The median is recommended over the mean when the distribu-
tions under consideration are skew because it is more robust to the occurrence of small
numbers of extraordinarily large values (Sachs, 1992). As lognormal distributions are
always skew, and triangular distribution are only symmetric as an exception, the choice
of the mean is a trade-off.

Parameter Set

In SimpleBox the necessary physico-chemical properties of a substance are calculated from
the three substance parameters octanol-water partition coefficient KOW, aqueous solubility
SW, and vapor pressure P0. Only these three properties are modeled probabilistically in
this section, i.e. their values are varied according to chosen probability distributions. All
other parameters are assumed to be fixed. This study focuses on the physico-chemical pa-
rameters for the following reasons: When substances are compared, it is useful to concen-
trate on the parameters that are specific for substances, i.e. physico-chemical parameters,
degradation rates, and emissions, thus making the differences between substances more
prominent. In case of degradation rates and emissions, the data situation is too poor to
derive distribution functions (Berding et al., 2000), which leaves only the physico-chemical
parameters.
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Scenario Definition

For the physico-chemical properties three common distribution types with distinct shapes
are explored, leading to three scenarios:2

Scenario uni uses uniform distributions U(a, b) for all three parameters, where a is the
lower bound, and b is the upper bound.

Scenario tri uses triangular distributions T (a,H, b), where a and b are lower and upper
bounds, respectively, and H is the mode of the distribution.

Scenario log uses lognormal distributions L(µ, σ2) where µ is the mean of the under-
lying normal distribution on logarithmic scale, and σ2 is its variance. Lognormal
distributions can alternatively be parameterized, as L(m, s2) where m and s2 are
mean and variance of the lognormal distribution.

While the distribution shape is varied, both the mean and the variance of the input
distributions are kept the same in all these scenarios. Thus, these scenarios separate effects
of the shape on the computed target distributions from effects resulting from changes in
input distribution mean and/or variance. The same approach has been taken by Hamed
and Bedient (1997), who compare normal, lognormal, and uniform distributions, also
parameterized with the same mean and standard deviation (in their case to investigate
the impact of input distribution shapes on the probability to exceed a given target value).
Results from Hamed and Bedient (1997) are discussed in detail in Section 4.5.

Estimating Location and Spread via Triangular Distributions

The comparable scenarios were parameterized following this procedure: The triangular
distribution was chosen as the starting point, because it is a three parameter distribu-
tion, whereas the uniform and the lognormal distribution are two parameter distributions.
While it is easy to derive the two parameters needed for either the uniform or the lognormal
distribution from a given triangular distribution, there is no simple way to parameter-
ize a triangular distribution from a given lognormal or uniform distribution, because the
third parameter gives the triangular distribution an additional degree of freedom, e.g. the
location of the mode, which determines its skewness. Starting out with a uniform distri-
bution, the triangular distribution could be assumed to be symmetrical (as the uniform is)
– which would ignore the ability of the triangular distribution to model skew probability
densities. Starting out with the lognormal distribution on the other hand, the location of
the triangular’s mode could be derived from the coefficient of skewness of the lognormal –
yet the skewness of the triangular distribution is limited, and the lognormal distribution
easily takes on a larger skewness than this limit.

Also the triangular distribution is not as flexible as the lognormal distribution: its mean
always falls within the middle third of the range from lower to upper bound (see p. 45).
And if a lognormal distribution with a low mean and a high standard deviation was given,

2The modified beta or PERT distribution (Section 3.2.5) could be assessed in additional scenarios.
This study focuses on the distribution types that are commonly used.
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the resulting triangular distributions could be in conflict with the requirement that only
positive values must be covered (because KOW, SW and P0 are always positive).

Note, that choosing triangular distributions as a starting point has a restricting effect
on possible lognormal distributions. The triangular distribution cannot have a coefficient
of variation (CV) larger than (

√
2)−1 ≈ 0.7 (Section 3.2.4). Hence, when lognormal

and uniform distributions are parameterized with mean and standard deviation from a
triangular distribution, their CV is bound to stay below this limit as well.3

Nevertheless the triangular distribution is ”the most commonly used distribution for mod-
eling expert opinion” (Vose, 2000). In a situation of scarce data it seems a good choice
to use a triangular distribution and the following heuristic approach of parameterization.

The triangular distribution’s lower bound a and upper bound b were set to the smallest and
largest measured literature value available, respectively. The mode H, which represents
the most likely value, was set to a value that represents expert opinion. For this expert
opinion, values selected by Mackay et al. (1999) and Shiu and Ma (2000) were used. In
some cases, these expert values were not measured values, but e.g. summary values, or
values cited without exact reference. When these values were larger than the maximum
literature value or less than the minimum literature value, the upper bound b or lower
bound a was set to the expert value, which happened eight times (out of 24 parameters).

Similar Approaches in Literature

A similar procedure to this approach is suggested in Taylor and Kuyatt (1994), a technical
report that provides guidelines to evaluate uncertainties of measurement results. Taylor
and Kuyatt differentiate between type A and type B evaluation of standard uncertainty.
Type A evaluation is done by statistical analysis. If there is no sufficient basis for statistics,
type B evaluation is applied which is ”usually based on scientific judgment using all
relevant information available.” In particular Taylor and Kuyatt introduce a method that
models the quantity (of which the uncertainty will be estimated) assuming a probability
distribution. The distribution is parameterized heuristically, e.g. by giving the interval
about the most likely value, which has a 50 percent chance of containing the true value (or
a 67 percent or 100 percent chance likewise). A measure for the uncertainty is then derived
by taking the standard deviation of this distribution. Suggested distribution shapes are
normal distribution, uniform (or rectangular) distribution and triangular distribution.
About the choice of distribution shape it is said that ”the rectangular distribution is a
reasonable default model in the absence of any other information. But if it is known that
values of the quantity in question near the center of the limits are more likely than values
close to the limits, a triangular or a normal distribution may be a better model.” Using this
terminology, the above approach uses triangular distributions instead of uniform, because
the expert opinion does represent some additional knowledge. The lowest and the highest
measurement results are used to set the lower and upper 100 percent limits. According to
the National Institute of Standards and Technology (NIST) website, these guidelines are
”adopted widely by U.S. industry, companies in other countries, NIST, its sister national

3Note that when distributions are shifted (see below), the theoretical lower bound of the CV is further
reduced.
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metrology institutes throughout the world, and many organizations worldwide” (Taylor
and Mohr, 2002).

Parameterizing comparable Lognormal and Uniform Distributions

From these triangular distributions T (a.H, b), distribution means mT and standard devi-
ations sT were derived (equations are given Section 3.2.4). Lognormal distributions that
are comparable to these initial triangular distributions may then be parameterized using
mT and sT as the mean mL and standard deviation mL of the lognormal distribution.
Similarly, comparable uniform distributions can be parameterized using equations from
Section 3.2.6.

Avoiding Negative Values

When deriving parameter sets for the uniform distribution by transferring mean and vari-
ance from the triangular or the lognormal distribution, the resulting uniform distribution
sometimes covers a range that includes negative values. Hence the uniform distribution
with the smallest deviation from the desired but impossible case is chosen: a uniform dis-
tribution with the lower bound at zero and the given variance. This results in a modified
mean value, so that the triangular and the lognormal distribution also have to be shifted
to have the new mean. The largest shifts that occurred were 22 percent of the distribution
mean. On average, distributions were shifted by 10 percent. In one third of the cases,
no shifting was necessary. The variance is independent of the location, and therefore not
affected by the shift. The coefficient of variation (CV) however decreases with a shift
towards larger parameter values. When the distributions are made comparable to the
uniform distributions, the limitation about the CV of a uniform distribution apply to
all distribution types, resulting in an upper bound of (

√
3)−1 ≈ 0.58 for the CV. The

resulting uniform, triangular, and lognormal distributions constitute the Scenarios uni ,
tri , and log , respectively. Together, they are also referred to as the comparable scenarios.

The parameter distributions used in the comparable scenarios (uni , tri , and log) are not
accurate scenarios to describe the substances. Rather they are technical examples of
parameter sets. However they were kept as close to real life substance parameters as
possible.

Representative results (sediment compartment) from the Monte-Carlo simulations per-
formed with the Scenarios uni , tri and log are shown in Figure 4.2 (target means) and
Figure 4.5 (target means together with associated target standard deviations). Conclu-
sions derived from these representative data apply to the whole set of data. Corresponding
figures can be found in the appendix.

4.3 The Influence of the Shape on the Location of the

Target Distribution

In Figure 4.2, the mean values of target distributions are shown; the data are grouped
by substance, each group consisting of the results from the three scenarios. Values are
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given as deviations from the arithmetic mean of the scenarios, which is computed for each
substance separately.

The variation of the target mean due to varying shapes of input distributions is relatively
small compared to their means. In all cases, the relative deviations are less than 2 percent,
when TCDD is set aside, deviations are even less than 1 percent.

Two obvious phenomena in this plot merit further explanation: Switching from one in-
put distribution to another has a different effect on the target mean from substance to
substance in the direction it takes; for some substances the mean concentration increases
while it decreases for others. Secondly the magnitude of the impact that changes in the
shape of the input distribution have, differs in-between substances.

4.3.1 The Direction of the Effect

The direction in which a change in input shape affects the mean differs in-between sub-
stances. For example in case of TCDD the target mean increases from scenario to scenario,
while it decreases in the cases of HxCDD. The key to understanding these differences lies
in two aspects in which the scenarios differ:

1. the functional dependency of input parameter and target values as defined through
the model equations

2. the way input parameter distributions cover ranges of parameter values

Functional dependency of parameter and target value is understood to be the behavior
of the target value when only one parameter is varied, i.e. while all other parameters
are fixed. Here, they are set to the medians of the associated distributions. Hence, the
functional dependencies are principally determined through the model equations, but of
course the parameter values forming the particular scenario under consideration have an
essential impact on it, too, as their values determine the region in parameter space that
is varied over. Therefore, functional dependencies of one particular parameter and the
concentration in a particular compartment differ from substance to substance.

In combination with the functional dependencies, the range of an input parameter dis-
tribution determines the range of possible target values. Naturally, differences in input
ranges imply differences in the output. It is therefore helpful to closely consider the
differences in ranges.

Figure 4.3 shows the concentrations in sediment for several substances as functions of the
three input parameters KOW, aqueous solubility and vapor pressure; all other parameters
are set to their deterministic value. The range that is indicated for each of the input
parameters is the range covered by the uniform distribution used in Scenario uni ; the
ticks along the x-axis mark percentiles of this uniform distribution. As a property of
the uniform distribution, these linear steps in percentiles are equivalent to linear steps in
parameter value. The functional dependency curves are therefore undistorted. Percentiles
as opposed to the specific units of the parameters allow several functions of different input
parameters to be plotted in a single single figure.
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Figure 4.2: Target means in sediment.
Target means from the Scenarios uni , tri , and log for the sediment compartment. Charts with the
results in other compartments can be found in the appendix. Data are grouped by substance, each
group consisting of the results from the three scenarios. Values are given as relative deviations from the
arithmetic mean of the scenarios, which is computed for each substance separately.

To visualize the ranges covered by the different types of input distributions, the actual
distribution used in the typical case of vapor pressure of HxCDD are given in Figure 4.4 as
an example. The triangular and the lognormal distribution are positively skewed4 while
the uniform distribution is symmetrical. As a consequence, the uniform distributions
covers a range of low values of vapor pressure that is not covered by the triangular
distribution. The lognormal distribution always covers the entire range from zero to
infinity, yet it is evident that the probability of the low values, which are well covered
by the uniform distribution, is almost negligible. At the far end of the distributions, the
opposite is the case: both the triangular and the lognormal distribution cover a range
that includes greater values than the maximum of the uniform distribution.

Comparing the input ranges of the different scenarios from Figure 4.4 with the functional
dependencies in Figure 4.3 provides an explanation for the different directions in which
target means were affected by different input distribution shapes. It is crucial for the
target distribution whether input distributions cover ranges where the sensitivity of the
parameter is extraordinarily large (i.e. the slope of the curve is steep), because ranges of
great sensitivity have a strong impact on the target distribution. When input ranges and
functional dependencies are aligned, differences in ranges become evident. Two examples
are used in the following paragraphs for further explanation. The argument that is made
applies to other cases in the same way.

Decreasing Target Means HxCDD is one example of a substance where the target mean
decreases from uni to tri and from tri to log . For sediment concentration of HxCDD,

4Also: skewed to the right, i.e. the right tail of the distribution is flatter.
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Figure 4.3: Functional dependencies in sediment.
Concentrations in sediment as functions of the input parameters KOW, SW, and P0.
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Figure 4.4: Input distributions of parameter P0 for HxCDD.

vapor pressure is the parameter with the greatest impact on the target value, which is the
sediment concentration in this case (its contribution to the total variance of the target
distribution is greater than 85 percent). This is visible in Figure 4.3C, because both,
the concentration as a function of KOW, and the concentration as a function of aqueous
solubilities are nearly constant. In contrast, the variation of the concentration due to
changes in vapor pressure are large at low vapor pressures. It is evident that a lower
vapor pressure causes a higher concentration of HxCDD. In case of the uniform input
distribution there is a much higher probability of low vapor pressures compared to the
triangular input distributions. In other words there is more probability mass accumulated
at low vapor pressures. Low vapor pressures result in high substance concentrations in
sediment. Hence the target distribution in case of uniform input distributions will have
more probability mass at high concentrations. The differences in covered ranges at the far
end of the input distributions do not have much influence, as the target value takes almost
a constant value for these inputs; therefore it is the range close to zero and the effects
discussed above that have a dominating influence on the target distribution: A larger
share of probability mass at high concentration values leads to a larger mean of the target
distribution, which is the observed effect (Figure 4.2). As the lognormal distribution
accumulates even less probability mass at low parameter values than both, the triangular
and the uniform, this same argument explains why the target mean in case of lognormal
input distributions is even smaller.

Increasing Target Means In case of TCDD, the observed effect takes the opposite di-
rection. From Scenario uni to Scenario tri , and again to Scenario log , the target mean
increases. The concentration decreases with vapor pressure P0 and increases with solu-
bility SW (Figure 4.3A). The impact of the parameters seems to be about equally strong.
However, the octanol-water partition coefficient KOW affects the target value in the same
way as solubility does. In combination, the impact of SW and KOW on the target value at
low parameter values is greater than the impact of P0, resulting in low TCDD concentra-
tions. Now, the same considerations as in the previous paragraph apply.

It should be kept in mind, that a ”combination” of the impacts of two parameters cannot
be estimated in a straightforward way. During Monte-Carlo simulation, all parameters
are varied simultaneously, hence low values of SW and KOW are not guaranteed to coincide.
Moreover, when e.g. SW and KOW are set to values other than the median, the functional
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dependency curve of the remaining parameter P0 will deviate from the curve displayed in
Figure 4.3, and vice versa. However statistically Monte-Carlo shots with low SW or low
KOW will occur more frequently than shots with low P0 values, and it is plausible that
functional dependency curves will not be too much distorted, as the model equations are
continuous.

In conclusion, whether the target mean increases or decreases depends on whether the
ranges, in which the input distributions differ, have a positive or negative effect on the
target values. Here, it depends on whether low parameter values imply low or high
sediment concentrations.

4.3.2 The Magnitude of the Effect

While the differences in-between the scenarios are overall small, their amount differs
significantly from substance to substance. For example, the TCDD means vary by about
3 percent while there is almost no variation of the target means of OCDD, EDC and
benzene (less than 0.03 percent) in-between scenarios.

The impact of switching one type of input distribution for another is correlated to the
overall sensitivity that the target value shows in case of a particular substance. Classical
sensitivity is a local property at a specific point in input parameter space. It measures
the effect that small deviations from this point have on the target value (Saltelli et al.,
2000). Over the course an input range, sensitivity may vary, sometimes to a large extent,
e.g. in case of HxCDD, where sediment concentrations depends very sensitively on vapor
pressure – but only at low values (Figure 4.3C).

The extent to which the target value varies when the parameter value varies over the entire
range may serve as a measure of the overall sensitivity of a target value for a parameter
over a range. In the plots of functional dependencies (Figure 4.3) estimates can easily be
made: TCDD concentration varies by about 180 percent of the base case,5 then follow
in decreasing order PeCDD (50 percent), HpCDD (35 percent), HxCDD (30 percent),
DEHP (20 percent), and OCDD (7 percent). This ranking is in agreement with a ranking
of differences of target means in-between substances as it can be estimated from Figure
4.2.

EDC and benzene vary by 20 percent and 50 percent, respectively, although there is
almost no inter-scenario variation between their means. This can be explained by the
linearity of the functional dependencies (Figures 4.3G and 4.3H). For any linear function
Y of a random variable X, i.e. Y = mX + b, the resulting mean is independent of
the probability distribution of X: E(Y ) = mE(X) + b (Sachs, 1992). Therefore, when
functional dependencies are near-linear as they are in case of EDC and benzene, changes
in parameter distribution will not affect the target mean.

4.3.3 Conclusion

Different choices for the distribution type for the input parameters were found to have an
impact on the mean value of the computed target distributions. Whether switching the

5The base case is the target value computed for all parameters set to their median values.
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shape of parameter distributions resulted in an increase or a decrease of the target mean,
and the relative magnitude of the impact were explained from the functional dependency
of the most influential parameter and the target value. Whether parameter ranges with
high sensitivity of the target value were covered by a distribution function is of particular
importance.

However, compared to the absolute value of the target means, the impact of changing the
distribution type is negligible.

4.4 The Influence of the Shape on the Dispersion

The shape of the parameter distributions also has an influence on the variance of the
target distribution (Figure 4.5). In addition to mean values of the target distributions,
target variances in sediment are shown as error bars, spanning two standard deviations.

Two aspects of the results in Figure 4.5 will be addressed: The target variances differ
in-between substances, and they differ in-between scenarios.

4.4.1 Inter-Substance Differences

To understand the differences of target variance in-between substances, one needs to ask:
What are the main differences from substance to substance that have an influence on the
variance of the model output? There are two things that have a major impact on the
variance of the model output in general:

1. the uncertainty of the input

2. the sensitivity of the model for the input

Especially the combination of a large uncertainty of an input parameter and a great
sensitivity of the target value for this parameter will produce a large variance in the
target value.

Input uncertainties are summarized in Figure 4.6. They are given as coefficients of vari-
ation (CV): For each substance the CV of KOW, SW, and P0 are plotted as error bars
around a normalized mean. For parameters with the greatest contribution to the target
variance, the corresponding bullets are enlarged. As in the previous section, a measure of
an overall sensitivity over the entire input range is required. The overall variation about
the base case (i.e. all parameters set to the medians of their distributions) is a useful
measure (Section 4.3.2)

In the following, the effects of input uncertainty and overall sensitivity on differences
of target variance in-between substances will be demonstrated. Two pairs of exemplary
substances are chosen: EDC and benzene, and PeCDD and HxCDD.
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Figure 4.5: Target variances in sediment.
Target means (diamonds) and variances (error bars) from the Scenarios uni , tri , and log in the sediment
compartment. Charts with the results for the other compartments can be found in the appendix.

Figure 4.6: Input parameter uncertainties.
The uncertainties of the parameters, given as the CV of the input distributions (error bars). Bullets are
enlarged for the most important parameter per substance.

Example EDC and benzene When comparing EDC and benzene, a significantly larger
target variance is computed for benzene (15 percent versus 7 percent, see Figure 4.5).
This is explained by a larger uncertainty of the input (Figure 4.6). The CV of the KOW

is 0.25 in case of benzene versus 0.18 in case of EDC. Furthermore, the overall sensitivity
over the input range of KOW is larger in case of benzene: The benzene concentration varies
by 50 percent of its base case , while EDC concentrations only vary by 20 percent (see
Figure 4.3, p. 58, and discussion on p. 60). The combination of larger sensitivity and
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larger input uncertainty result in a larger target variance. The same argument holds in
most cases.

Example PeCDD and HxCDD In case of PeCDD and HxCDD, the target variance of
PeCDD concentration is larger than the variance of HxCDD concentration. The input
uncertainties are the same for both substances and hence do not explain the difference.
However, PeCDD concentrations vary over 50 percent of its base case, whereas HxCDD
only varies by 30 percent (Figure 4.3). This indicates a larger overall sensitivity in case
of PeCDD. Moreover, the slope in case of HxCDD is steep only for a short range of low
values of P0. It is almost zero for the major part of the total range. In the steep part
of the curve, the sensitivity is indeed great and comparatively large concentrations will
be produced; yet compared to the total range, these large values are too few to have a
great impact on the target variance. The almost constant part of the curve with a low
sensitivity dominates the target variance. In case of PeCDD, the curve is never as steep
as in the former case, but it maintains a decent steepness over the entire range. The high
concentration values produced at low vapor pressures may not be as high as in the former
case, but they are greater in number. Thus the impact on the target variance is greater.

4.4.2 Inter-Scenario Differences

There are two types of inter-scenario behaviors between target variances in Figure 4.6:
those cases where the variance decreases, and those where it stays the same. The difference
in the model input in-between scenarios that can explain both, occurrence and direction
of this effect, is the sensitivity of the ranges covered by the parameter distributions.

The first class is made up by the dioxins and DEHP. For all substances in this class, the
target variance decreases from Scenario uni to Scenario tri , and decreases further from
Scenario tri to Scenario log . The decrease has a magnitude ranging from 24 percent of
the mean variance of two scenarios, to as much as 170 percent.

The second class consists of EDC and benzene. For these substances, the target variance is
almost identical no matter which scenario is considered. Differences between two scenarios
are less than 2 percent of the mean variance of the concerning scenarios in all cases.

In the following, examples from either class are used to explain how the inter-scenario
differences in Figure 4.6 can be explained.

Variance Decreases with Scenarios In case of HxCDD, the vapor pressure P0 is the
parameter with the greatest contribution to the overall variance of the target distribution.
Figure 4.7 shows the functional dependency plot of HxCDD concentration in sediment
and the vapor pressure, together with the different input distribution shapes used for the
parameter P0.

This plot captures the interaction of different ranges covered by the input distributions,
and the sensitivity of the model at points in these ranges. The functional dependency
curve reveals a great sensitivity of the sediment concentration at low vapor pressures,
indicated by a steep slope. At higher vapor pressures the sensitivity is much lower. From
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Figure 4.7: Functional dependencies with input distributions.
Functional dependency plots of HxCDD and benzene concentration in sediment, together with the dif-
ferent input distribution shapes used for the parameters P0 and KOW, respectively.

the probability distribution functions it is evident, that only the uniform distribution
covers this range of great sensitivity with a significant share of its probability mass.
The triangular distribution does not cover the lowest values at all, and the lognormal
distribution, which always covers the range from zero to infinity, assigns only negligibly
low probabilities to low vapor pressures. Hence only in case of the Scenario uni does the
great sensitivity at low values come into effect, leading to a significantly larger variance
of the target distribution.

The same argument can be made to distinguish between the triangular and the lognormal
distribution. The triangular distribution covers the range from 2.5e-5 Pa to 1.0e-5

Pa with significantly more probability mass than the lognormal distribution. Hence the
target variance in case of the tri scenario is greater. It is noteworthy that the difference in
sensitivity is not as striking as before, which explains why the difference in target variance
is smaller from tri to log than it is from uni to tri .

The input distributions differ at the upper end of the total range as well. But since
the HxCDD concentration is almost constant for parameter values in this range, these
differences hardly affect the target variance.

Same Target Variance in all Scenarios In case of benzene, the octanol-water partition
coefficient KOW is the parameter with the greatest contribution to the target variance.
Plots of functional dependency of benzene concentration in sediment and KOW, along with
the input distributions used for KOW in the different scenarios are presented in Figure 4.7.

Similar to the above example of HxCDD, the scenarios differ in the ranges covered by the
input distributions. However, the target values are almost identical as Figure 4.5 shows.
The difference to the previous example is in the curves of the functional dependency plot.
The change of benzene concentration with the KOW is almost linear. Thus the sensitivity
measured as the slope of the curve is the same at every point in the total range, and
differences in the covering of the range by the different distributions do not matter.

This is in agreement with mathematical theory. A well known property of the vari-
ance Var(X) of a random variable X is that Var(mX + b) = m2Var(X). Moreover
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it is known that the variance of a sum of independent random variables is the same
as the sum of the variances of the individual random variables, i.e. Var(X ± Y ) =
Var(X) + Var(Y ) ± Cov(X,Y ), where Cov(X,Y ) is the covariance. Hence in case of
a linear functional dependency the target variance depends on the model and the input
variance only, it does not depend on any other characteristics of the input distributions.
Therefore, in the case of benzene, the parameter variance is the same for all scenarios.

The argument made for the two examples HxCDD and benzene can be applied to all
substances, scenarios, and environmental compartments safe one case: for DEHP in air,
variance increases from uni to tri . However, the parameter distribution is exceptional
in this case: the triangular distribution used in tri is negatively skew, which makes the
triangular distribution cover more sensitive ranges than the uniform and the lognormal
distributions (in that order). When this is taken into account, the statement from above
applies here as well.

Finally, note that great differences in the target mean often coincide with great differences
in variance. It seems plausible that differences in scenarios that have a great impact on
either the target mean or the target variance actually have an impact on the target
distribution as a whole, hence changing both, the mean and the variance at the same
time.

4.4.3 A Word On 90th Percentiles

In the previous sections, input distributions and computed target distributions are char-
acterized by the mean and the standard deviation. In practical risk analysis it is often
the mean and the 90th percentile or the 95th percentile that are considered. Standard
deviation and location of the 90th percentile are similar to the extent that both describe
the spread of the distribution. Often, a distribution possessing a large standard deviation
will also have a large 90th percentile. However this need not be the case, as has been
shown in Section 3.2.3 in case of the lognormal distribution, where the 90th percentile is
shown to decrease with an increasing standard deviation (p. 41). Therefore in this section
an effort is made to show that results found for the target standard deviation hold for the
90th percentile as well.

Hamed and Bedient (1997) compare effects of different parameter distribution shapes
(normal, lognormal, and uniform distributions) on 50th and 95th percentiles. The model
under consideration is from the domain of public health risk assessment and calculates
incremental lifetime cancer risk. Using first-order reliability method (FORM) as opposed
to Monte-Carlo Simulation to propagate distributions through the model, FORM prob-
abilities of failure are computed, meaning the probability for the target value to exceed
a predefined fixed value. As fixed values the 50th and the 95th percentile of a base case
target distribution are chosen.

Their findings are relevant here, as both, the exceedence of the 95th percentile and the 90th

percentile itself (as treated in Hamed and Bedient (1997) and in this work, respectively)
make statements about the tails of the distribution, while the exceedence of the 50th

percentile and the standard deviation describe more central properties of the distribution.
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Hamed and Bedient (1997) found that exceedence probabilities for 50th and 95th per-
centiles are in ”excellent agreement”, i.e. they behave alike. They argue that this is
expected: If the use of certain input distribution shapes results in increased target values,
then the probability to exceed a threshold value increases irrespective of the threshold
value (the 50th or the 95th percentile in this case). In contrast, it was found that the
impact that a change of parameter distribution shape had on the exceedence probability
was much greater when the 95th percentile was considered as the threshold value. The
impact was measured as the maximum relative change in exceedence probability from a
base case.

In this work, a linear regression is performed to establish a correlation of 90th percentiles
and standard deviations. If 90th percentiles and standard deviations are correlated, they
can be assumed to behave in an analog way, and that results about standard deviations
from the previous section also apply to 90th percentiles.

Before a regression can be performed, standard deviations and 90th percentiles of the
different substances need to be normalized, because otherwise the enormous differences
in-between substances marginalized the differences in-between scenarios. Unlike before,
where normalization by the mean has been used to make means and standard deviations
comparable, here standard deviations and 90th percentiles are divided by the average
median of the scenarios per substance. The median is the 50th percentile, hence it is more
compatible to the 90th percentile (the same way, the mean and standard deviation work
well together). The decisive difference between mean and standard deviation of a random
variable compared to median and 90th percentile, is that the former two are affected
by the value of the random variable6. In contrast, the median and the 90th percentiles
are based on a ranking of the values or, in the continuous case, they are based on the
amounts of probability mass to their left and right, regardless of its absolute location.
When large standard deviations of the target value coincide with a great skewness of the
target distribution, the mean is likely to be large as well. Hence the relative effect of
normalization on the 90th percentile is much greater than on the standard deviation. The
median is chosen to avoid this.

Despite the difference in their nature noted above, standard deviation and 90th percentile
behave in a similar way as measure of the spread of the target distribution. The similarity
can be demonstrated with a linear regression that has been performed for 90th percentiles
against standard deviations, all normalized by the average of medians as described above.
Table 4.2 lists the coefficients of determination of the regression.

The regression of 90th percentiles of the log scenario to standard deviations of the log
scenario fits the data very well, as a coefficient of determination of R2 = 0.98 shows. Figure
4.8 shows this result graphically. The same is true for the regression of 90th percentiles
and standard deviations of the tri scenario, where the coefficient of determination is
R2 = 0.97. R2 may be interpreted as the extend to which one variable explains the other.
Here, the 90th percentile is explained to 98 percent by the standard deviation (or to 97
percent in case of triangular distributions). Hence the same arguments that explained
target standard deviations can be used to explain target 90th percentiles.

6This is evident from the integral definition of expected value E(X) and variance Var(X), namely
E(X) =

∫ ∞

−∞
xf(x) dx and Var(X) = E[(X − µ)2] =

∫ ∞

−∞
(x − µ)2f(x) dx, which are affected by x and

the distance (x − µ), respectively.
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Table 4.2: Coefficients of determination.
Coefficients of determination R2 of linear regressions of 90th percentiles (rows) against standard deviations
(columns). In case of uni/uni regression determination is raised to 0.83 when an outlier is omitted (TCDD
concentration in soil, see text for details). The coefficients of determination are high and indicate a good
fit of the regression to the simulation data.

uni tri log

uni 0.69 0.89 0.78

tri 0.51 0.97 0.93

log 0.38 0.97 0.98

In case of the regression of 90th percentile against standard deviations of the uni scenario,
the coefficient of determination is just R2 = 0.69, which is significantly lower than in
the two previous cases. The data and regression curve are shown in Figure 4.8. TCDD
concentration in soil was treated as an outlier. An explanation for this will follow in
the next paragraph. By omitting this data point, the determination can be raised to
R2 = 0.83; still less than in the cases before.

Both, the outlier and poor determination of the regression in case of the uni scenario can
be understood by looking at functional dependencies and parameter ranges covered by
input distributions. As stated before, in many cases the curve describing the functional
dependency of substance concentration in a compartment on an input parameter is par-
ticularly steep at values closest to zero, i.e. sensitivity is greatest close to zero. At the
same time, it is often this range closest to zero of the parameter that is covered only by
the uniform distribution, and not by the other distribution types (see Figures 4.3 and
4.7). Hence, most extreme target values are computed in the uni scenario. In case of
extreme values, the behavior of standard deviation and 90th percentile differ, as explained
before. Therefore the fit of the regression can be expected to be less good in case of
the uni scenario. In case of TCDD in soil this is taken to an extreme. The functional
dependency curve (see appendix) is by far steeper than in any other case, which results
in extremely large TCDD concentration values. The same reasons that cause a greater
scatter in all the uni against uni data point, makes TCDD in soil an outlier.

Furthermore regressions of uni 90th percentiles to tri and log standard deviations are
better than regression to the uni standard deviations (R2 of 0.89 and 0.78 as opposed to
0.63, see Table 4.2). As the triangular and lognormal distributions mostly do not cover
the range closest to zero, it is plausible that their target standard deviations are in better
agreement to the 90th percentiles of the uni scenario than the standard deviations of the
uni scenario itself.

Conclusion

In summary, the 90th percentiles and standard deviation of target values showed essen-
tially consistent behavior in case of the considered substances and scenarios. Exceptions
occurred when target distributions had long flat tails, i.e. when there were only few very
large values generated by Monte-Carlo simulation. In such cases 90th percentiles and
standard deviations are not readily comparable anymore, due to their different natures
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Regression of Standard Deviation and 90-Percentile
from uniform input distributions

R2 = 0,69

R2 = 0,83

0,9

1,1

1,3

1,5

1,7

1,9

2,1

2,3

2,5

0,0 0,5 1,0 1,5 2,0 2,5 3,0

std. dev. normalized by median

9
0
-p

e
rc

e
n

ti
le

n
o

rm
a
li

z
e
d

b
y

m
e
d

ia
n

Figure 4.8: Regression of 90th percentile versus standard deviation.
In the bottom plot, two regression curves are shown: the result of regression all data, and the result when
the outlier at (2.44, 2.16) is omitted.

(the standard deviation being a weighted measure as opposed to the 90th percentile be-
ing based on a ranking). It is in such cases that extra attention should be paid to 90th

percentiles.

This result is in agreement with the findings of Hamed and Bedient (1997) as stated
above. Additionally, Hamed and Bedient show that in their case, the impact of parameter
distribution shapes is greater when considering the 95th percentile as threshold value. An
analog trend has not be found in this case. Reasons for this might be, that due to their
different natures, standard deviation and 90th percentile do not compare as well as the
50th and 95th percentile as threshold values, and the differences in considering standard
deviation and 90th percentile directly as opposed to considering percentiles as threshold
values.
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4.4.4 Informational Content of the Input and Uncertainty of the

Output

In the previous sections, a noteworthy trend was observed: the variance of the computed
concentrations decreased from uniform input distributions to triangular distributions and
again to lognormal distributions (Figures 4.5 and A.4–A.6). There were cases where the
target variance decreased very little or remained about the same, but it did not increase
significantly (the sole exception DEHP in air is discussed above). This order (uni–tri–log)
coincided with the order of increasing informational content of the distribution types:
According to the maximum entropy principle (Section 3.2.1), the uniform distribution
is appropriate when the only information available are lower and upper bound. The
triangular distribution is inferred from upper and lower bound also, and additionally
the mode of the distribution. The lognormal distribution is based on arithmetic mean
and standard deviation. When estimated from data, the required minimum number of
observances are five and 25 observances, respectively, thus more information is contained
in mean and standard deviation than in upper bound, lower bound, and mode. Hence,
the ranking of the computed target variance mirrors the informational content of the
parameter distributions.

A plausible reason for this ranking is the tendency of distribution types that are based
on more information to accumulate more of their probability mass closely around their
mean. When this is the case, there is a smaller total range. With a smaller total range,
there is also a smaller chance to cover additional parameter ranges of large sensitivity,
that are not covered by a distribution based on less information.

As explained above in this section, the target variance is influenced by the sensitivity of
the range of parameter values that is covered by the parameter distribution. It follows
that differences in the parameter ranges are a necessary prerequisite, and the sensitivity
must be particularly large over the range covered by one distribution but not the other.
Naturally differences in the range that is covered are more likely at the tails of a distri-
butions than in its middle if the distributions are roughly at the same location. Chemical
exposure models such as SimpleBox are likely to fulfill these preconditions, because ex-
ponential dependencies are common in the model equations, hence sensitivity tends to
increase towards one of the distribution’s tails.

In this sense, the order in target variance is also a consequence of the information content
of the parameter distributions. This result is consistent with Bukowski et al. (1995), who
note that addition, multiplication, and division of combinations of uniform and triangular
distributions result in remarkedly wider target distributions than combinations of normal
and lognormal distributions.

4.4.5 Conclusion of the Influence of the Shape on the Dispersion of

the Target Distribution

The effects of different parameter distribution types on the spread of the computed target
distributions has been assessed.
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The computed target distributions differed in their variance from substance to substance.
These differences can be explained by input uncertainty of the parameters and their
sensitivity measured as the overall variation. Both have a positive effect on the target
spread.

In some cases, uniform, triangular, and lognormal parameter distributions resulted in
significantly different target variances. Target variances were almost identical in-between
scenarios, when functional dependencies between input parameters and target value were
near-linear. Significant differences occurred when the functional dependency between
input parameter and target value were non-linear. Then, the impact on the target variance
were much larger than the impact on the target mean discussed in Section 4.3. And the
differences between scenarios could be explained from case to case by considering the
sensitivity of the range of parameter values covered by the parameter distributions.

The variance of a target distribution is a measure of its spread, as is the 90th percentile.
The behavior of the 90th percentile was found to be so similar to the behavior of the
standard deviation, that results from the analysis in this section may be transfered to the
90th percentile.

Finally, the ranking of parameter distribution type after the variance that they cause
mirrors the informational content that is attributed to the distribution types in maxi-
mum entropy theory. Hence, in this case, less informational content resulted in a larger
uncertainty of the result.

4.5 Shape Influence on Shape

There are three main influences that determine the target distribution shape:

1. the input parameters shapes,

2. the model (i.e. the form of the function between parameter and target value), and

3. influences from interaction with other probabilistic parameters.

The central limit theorem gives an idea of how item 3 influences the shape.

Central Limit Theorem

The central limit theorem (CLT) of probability theory describes how the number of ran-
dom variables affects the shape of their sums or products. Usually employed in the context
of sums of random variables, it states that given a number of independent, positive ran-
dom variables, the distribution of their sum will be approximately normal, i.e. as their
number becomes large, the distribution of the sum converges to a normal distribution
(Sachs, 1992). The CLT can also be applied to products of random variables. By taking
logarithms this case is reduced to the former case of a sum, now a sums of logarithms
of random variables. In consequence, their distribution is then approximately lognormal
when the number of random variables in the product is large.
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The CLT holds regardless of the distribution type of the factor random variables. If
the number of probabilistic parameters is large enough, the shapes of input parameters,
and the functions in the model (items 1 and 2) will have no impact on the resulting
shape. It can be expected that their influence grows when fewer parameters are varied
probabilistically. This section discusses influences on the shape for large numbers of varied
parameters, few varied parameters, and the special case of one probabilistic parameter.

4.5.1 Many Probabilistic Parameters

In multiplicative models with large numbers of parameters, the computed target distribu-
tion is – according to the CLT – approximately lognormal. The same seems to be true in
case of the SimpleBox model: Berding et al. (2000, p. 138) found, that the distribution of
concentrations in the environmental compartments are close to lognormal by applying a
Kolmogorov-Smirnov test. This result is plausible, because even if the functions between
parameters and target values in case of SimpleBox are not solely multiplicative, a great
share of the operations are products, and they might dominate the shape of the target
distribution (MacLeod et al., 2002).

Obviously, the number of parameters that are varied probabilistically (and hence corre-
spond to independent random variables in the CLT) has a major influence on how well a
lognormal distribution fits the target distribution.

Berding et al. applied the Kolmogorov-Smirnov test to the target distributions of three
scenarios, varying either substance parameters only (meaning the physico-chemical prop-
erties KOW, aqueous solubility, and vapor pressure along with degradation rates and emis-
sions); or the remaining parameters, called model parameters, or, in the third scenario,
all parameters. The substance parameters add up to about fifteen parameters (depending
on mode of entry), while there are 38 model parameters, and hence an overall number of
53 parameters if both substance and model parameters are varied.

The Kolmogorov-Smirnov test was passed in most cases when 38 or 53 parameters were
varied. In case of the fifteen substance parameters it is failed often, the critical value
being just missed. This suggests that the more parameters are varied, the closer the
target distribution gets to a lognormal shape, just as the CLT states for multiplicative
models.

To illustrate that there is no significant difference in the target shape, no matter which
distribution type is used for an individual parameter (or a small group of parameters such
as the physico-chemical parameters), simulations of the comparable Scenarios uni , tri , and
log have been performed with a modification: all parameters were modeled probabilisti-
cally (whereas before, only the physico-chemical parameters have been varied). Figure 4.9
shows an exemplary plot of the target distribution for soil concentration of benzene. Re-
sults for uniform, triangular, and lognormal distributions for physico-chemical parameters
are shown in one plot. Even though 50’000 Monte-Carlo shots were performed, the dis-
tributions differ somewhat, yet there is no visible trend in the difference from scenario to
scenario. The difference seems to be due to the randomness of the Monte-Carlo approach
only, and indeed the scatter of several Monte-Carlo simulations of the same parameters
scenario can visually not be differentiated from the scatter between the curves in Figure
4.9.
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Figure 4.9: Target distributions of soil concentration.
Target distributions of soil concentration using uniform, triangular, or lognormal distributions. For these
three scenarios, all parameters were varied probabilistically. The scenarios differ in the distribution types
that were assumed for the physic-chemical parameters KOW, aqueous solubility, and vapor pressure. For
these three, uniform, triangular, and lognormal distributions were used. In the left plot, the 50 000 shots
performed are distributed over 450 equidistant classes. The smoother curve in the right plot is the result
of limiting the number of classes to 50. Evidently, the differences in the result among the three scenarios
are due to the randomness of the Monte-Carlo simulation rather than the choice of input distributions.

4.5.2 Few Probabilistic Parameters

In case of the comparable scenarios, the number of probabilistic parameters is only three.
Moreover, in many cases there are probabilistic parameters that have little or no influ-
ence on the target distribution, i.e. the target value is insensitive for such parameters.
Effectively, this then reduces the number of distributions affecting the shape of the target
distribution to two or less.

Consequently, the target distribution shapes are far from lognormal. It has been tried to
plot the empirical cumulative density function against the lognormal cumulative derived
from mean and median estimated from the simulation results. Any two resulting curves
never fit together.

Three cases occurred. Often, the target mean was lower than the target median, indi-
cating that the distribution is negatively skew. This can be due to the input parameter
shape and/or the function between parameter and target value. Negatively skew target
distributions can easily arise when the input distribution is negatively skew (which does
occasionally happen), and also when a positively skew parameter distribution and a de-
creasing function of parameter and target value coincide, because any decreasing function
will map a positively skew distribution to a negatively skew distribution shape and vice
versa. A lognormal distribution (which is always positively skew) could in this instance
not be plotted. In cases were both, the empirical cumulative, and the cumulative derived
from estimated mean and median could be plotted, mostly the empirical cumulative was
by far steeper than the derived lognormal cumulative. Figure 4.10 shows TCDD soil con-
centration as one example for this case. For comparison, a plot of the results for the same
substance and compartment, but of a simulation varying all 53 parameters is included in
Figure 4.10. It is expected, that the cumulative is steeper when only three parameters
are varied (the right plot covers four orders of magnitude, while the plot on the left covers
only two), because the 50 additional parameters all contribute to the total uncertainty.
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The third case is the one exception to this behavior: in one case, the empirical cumulative
was not steeper but flatter than the lognormal cumulative.

4.5.3 One Probabilistic Parameter

If only one parameter is varied, there is no influence from interaction with other prob-
abilistic parameters. If in addition, the function between parameter and target value is
linear, then the model will have no influence on the target distribution’s shape either,
and the shape will only be determined by the parameter distribution – it will be a scaled
image of the parameter distribution. Figure 4.11 illustrates this point.

The benzene concentration in soil is a nice example of this case. Here, 100 percent of the
contribution to variance are is due to the KOW. As it is know from previous sections, the
functions of parameters and concentrations are close to linear (p. 64). As a result, the
shape of the target distribution closely resembles the shape of the only input parameter
distribution (Figure 4.12). If, on the other hand, the relationship between parameter and
target value is non-linear, the input distribution is mapped to a distorted image of itself,
the distortion being determined by the functional dependency.

One of the most extreme non-linear functions is that of TCDD vapor pressure and soil
concentration (Figure 4.13). The target distributions all show similar shapes despite the
fact that vapor pressure has a contribution of about 90 percent to the overall variance,
and hence there is almost no other probabilistic parameter to interact with (KOW does
not contribute to the variance, hence solubility accounts for the remaining 10 percent).
The function dependency of vapor pressure and soil concentration has a very steep slope
at low vapor pressures. Its steepness is monotone decreasing. A steep slop results in a
wide, spread out target distribution, because even two close input values will be mapped
to target values that are relatively far apart. In contrast, a gentle slope focuses the target
distribution to a narrow range, just like a constant function would map all values to one
single target value. And that is what happens here, especially to the uniform and triangu-
lar parameter distributions (Figure 4.13). The long gentle tail of the function concentrates
much of the target probability mass in a peak around 4.5e-17 kg/kg, while its steepness
at low vapor pressures gives the target distribution a long flat tail. Understandably, the
effect is not as strong in case of the log scenario, since the lognormal parameter function
does not cover the steep ranges of the target value/parameter function very well. However
the same effect of concentrating more probability mass in a taller peak and flattening the
tail of the distribution is visible.

While in case of benzene and an almost linear model function, the parameter distribution
shapes alone determined the target distribution shapes, TCDD is an example of how the
model function has a strong impact on the target distribution shape, when it deviates
from linearity.

4.6 Sensitivity of Shape versus Sensitivity of the Mean

In Scenarios uni , tri and log , comparable input distributions have been used. The dis-
tributions in the scenarios are comparable in the sense that their mean values and their
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Figure 4.10: Cumulative density functions of TCDD soil concentration.
In cases were both, the empirical, and the derived lognormal cumulative could be plotted, mostly the
empirical cumulative was by far steeper than the lognormal cumulative (left). When all parameters were
varied, it was possible to fit the empirical with lognormal distribution (right).
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Figure 4.11: Linear model.
If the function between parameter and target value is linear, then the shape will only be determined
by the parameter distribution – it will be a scaled image of the parameter distribution. A decreasing
function maps to a mirrored image.

standard deviations are equal, and differ only in their shapes. Hence, in Sections 4.3–
4.5 it has been shown how the selection of different shapes affect the resulting target
distributions.

The selection of different means or different standard deviations can have similar effects
on target distributions. Since the data for determining input distributions are often scarce
(Chapter 2) it is useful to know whether more effort should be made to determine the
”best” shape or the ”best” mean (or other measure of location) for a parameter. In other
words, it would be useful to know whether target distributions are more sensitive towards
uncertainty about the mean or uncertainty about the distribution type.

In order to quantify the difference between selecting another distribution shape and chang-
ing the mean, the equivalence shift is defined. The equivalence shift is a measure describing
how far one distribution needs to be shifted (i.e. by changing its mean) to produce a target
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Figure 4.12: Probability density function of benzene in soil.
The plot shows the three different target distributions from the Scenarios uni , tri , and log . As KOW is
the only sensitive parameter and the function between soil concentration and KOW is almost linear, the
target distributions closely resemble the input distributions. (Input distributions are shown in Figure 4.7
on page 64.)

distribution equivalent to that of a particular other distribution type. Starting point is a
situation of comparable locations, e.g. the same means for both distribution types.

Two target distributions are considered equivalent in this section, when they possess the
same standard deviation. The other readily available criterion would be equivalence of
target means. Standard deviations are preferred, because effects are numerically larger in
this case. 7

4.6.1 Scenario Definition

Based on the comparable scenarios (Section 4.2), a series of simulation runs has been
performed in which input distributions of one scenario (uni or tri) are shifted until the
target standard deviation equals those from the other scenarios (tri and log , or log , respec-
tively). Standard deviations are kept the same during this procedure. All three substance
parameters are shifted simultaneously, since the relative importance of the parameters
varies in-between substances and compartments. Thus it is easiest to shift all parameter
distributions, which will shift the important ones in any case.

Preliminary tests have shown that a shift of 50 percent of the distributions mean towards
larger parameter values was sufficient.8 In the range from 0 percent to 50 percent, five

7Computations with the target mean as the criterion for equivalence were also performed. The results
were similar to the results presented, yet there was more scattering and there were more exceptions to
the general trend.

8In three cases, namely air concentration of DEHP (tri and log) and sediment concentration of EDC
(just tri), there were no equivalence shifts possible. Here, standard deviations from Scenario uni were
lower than in case of tri or log and only decreased with shifting. Shifts to the opposite direction are not
possible as the lower bound of the uniform distribution would become negative in that case.
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Figure 4.13: Probability density function of TCDD in soil.
The upper plot shows vapor pressure parameter distributions for TCDD along with the curve of the
function soil concentration and vapor pressure. Below is a plot of the probability density functions of soil
concentration computed for three scenarios (uni , tri , and log).

scenarios have been computed at equidistant steps. At 0 percent shift, the computation
is identical to the comparable scenarios. Figure 4.14 shows an exemplary result of the
simulations. A plot for one substance concentration in a specific compartment is given.

From such plots, equivalence shifts can be estimated. If the target variance changes
continuously with the location of the input distribution, then in this case the equivalence
shift for tri lies in-between 12.5 percent and 25 percent, since standard deviations at 12.5
percent and 25 percent are above and below the standard deviation computed in the tri
scenario. And then the equivalence shift to match the mean of the lognormal distribution
is between 25 percent and 37.5 percent.

To automatize finding these shifts, a regression curve is computed (Figure 4.14). The
regression equation used is y = bxm. It was selected from the Excel R© built-in regression
types, because it visually fits well in many of the cases, and the inverse function is readily
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Figure 4.14: Standard deviation from shift scenarios.
Example Plot TCDD in water. In the plot standard deviation values of the concentration are plotted
against the percentage of the input mean by which the distribution has been shifted (in this case the
uniform distribution). Diamonds indicate simulation results at 0 percent, 12.5 percent, 25 percent, 37.5
percent, and 50 percent, and horizontal lines indicate standard deviations from the tri and log scenarios.

available. The plot shows that the equivalence shifts estimated from the regression curve
are only rough approximations – even though the coefficient of determination is quite
high at R2 = 0.99 in this case. In fact, coefficients of determination indicate good fits in
almost all cases (the values of R2 are included in the summary plots, Figure 4.15). Yet
the regression curve misses the computed value at 12.5 percent and intersects with the
standard deviations from the tri scenario at shift values that is probably too large. Such
inaccuracy may be tolerated, as the objective is to get only an idea of the shift needed
to produce similar results.9 It should be kept in mind however, that the results from this
procedure are just rough approximations.

Two sets of scenarios were computed: in the first set, the triangular distributions from
the tri scenario were shifted to match the log lognormal distributions. In the second set
the uniform distributions from uni were shifted to match the results from tri , and shifted
further to match the results from log .

4.6.2 Shifted Triangular Input Distributions

The values of R2 that are indicated in the plot are all larger than 0.88 and on average as
high as 0.95 and 0.97 for shifted tri scenario distributions and uni distributions respec-
tively. Such high values show that the regression performed well for most of the cases
considered. Among the estimated shift values, three cases can be distinguished:

9To derive a more robust estimate, linear interpolation in-between each two neighboring points could
be calculated. Then, intersection points would only be computed when there are simulation results
greater and smaller than the fixed values. Graphically this is a readily available feature in Excel R©, yet
determining the inverse function and intersection point is more arduous.
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Figure 4.15: Equivalence shifts for triangular distributions.
Summary plot of equivalence shifts for triangular distributions. The bars give the percentage of the mean
by which the uniform distribution need to be shifted to produce the same target standard deviation as
in case of lognormal distribution shape. Coefficients of determination (R2) are indicated as points above
the bars of the bar chart, their values are on the secondary y-Axis.

1. The equivalence shift for dioxins takes approximately the same value in all compart-
ments and for all dioxins considered,

2. DEHP behaves different from compartment to compartment, i.e. in soil and air the
shifts are about twice as large as in the other compartments, and

3. EDC and benzene input distributions need significantly smaller shifts for equivalence
to log results in all compartments compared to the other substances.

Case 1 The dioxins need an average shift of 8 percent . In Sections 4.3–4.5 the functional
dependency plots showed that the dioxins have a range of large sensitivity for input
values close to zero. It has been demonstrated that triangular input distributions in
tri resulted in larger target variances than lognormal distributions in the log scenario,
because the triangular distributions cover more of this particularly sensitive range. As
the triangular distributions are shifted gradually to larger parameter values, i.e. away
from the range of greater sensitivity, the target variance will decrease and eventually
equal the variance of the log scenario. A plot of the lognormal distribution and the
shifted triangular distribution computed to be its equivalent (in terms of target standard
deviation) stresses this point (Figure 4.16). The parameter ranges that are covered by
any such two distributions are in good agreement. This gives further support to the
importance of the input parameter distribution for the target distribution.

Case 2 The case of DEHP is special because the equivalence shift differs remarkably from
soil and air compartments to the water and sediment compartments: for the former two,
the equivalence shift is about 21 percent, whereas it is just 7-8 percent for the latter two
compartments. This is easily explained by considering the shapes of input distributions
for the dominant parameters. The triangular distributions of KOW and SW have positive
skewness, whereas the P0 distribution is negatively skew. The skewness of the lognormal
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distribution is always positive. A positively skewed triangular distribution is much closer
to their lognormal counterparts to begin with, and less shifting is necessary to produce
equivalent results. The contributions to variance help to explain the differences: in the
compartments soil and air P0 determines about 50 percent of the target variance, whereas
it has only marginal influence in the water and sediment compartments (0 percent and
9 percent, respectively). Figure 4.16 shows DEHP input distributions for KOW and P0.
For each parameter, lognormal and triangular distributions from Scenarios log and tri are
given. In addition, the shifted triangular distribution is given, which is hence equivalent
to the lognormal distribution in the target variance it produces. In the top row, the
criterion is soil concentration variance to which vapor pressure contributes 50 percent, in
the row below the criterion is water concentration variance where vapor pressure has no
influence. It is evident, that the negatively skew vapor pressure distribution created a
larger shift in case of the top row as opposed to the bottom row.

Case 3 In case of EDC and benzene, the equivalence shifts are significantly lower than
in all other cases. This is the same for all compartments. An explanation can be found in
the coefficients of variation (CV) of the input parameters. The parameter distributions
of EDC and benzene differ from the other parameter distributions in the coefficient of
variation. For these two substances, CV for sensitive parameters are significantly lower
(Figure 4.6). The CV of the dominant parameters are 0.2 and 0.3 for EDC and benzene,
respectively, compared to a CV of about 0.6 for most other substances. Figure 4.17 shows
an illustration of the influence the CV has on the distribution shift. The ranges covered
by the shifted distribution and the original distribution differ a lot more for smaller CV
than for larger CV. In case of small CV only small shifts are needed to cover a parameter
range that produces results equivalent to the lognormal distribution, which explains the
small equivalence shift in case of EDC and benzene.

4.6.3 Shifted Uniform Input Distributions

When the uniform parameter distributions from Scenario uni are shifted towards larger
parameter values there are two cases to consider: they can either be shifted until a
standard deviation equivalent to the tri scenario or a standard deviation equivalent to
the log scenario is reached. Simulations were performed for both cases, and the results
are shown in Figure 4.15 Here, the same distinction into three sub-cases as before is made
(p. 77).

Case 1 Among the dioxins there is again a fairly common behavior. To equate the tri
scenario, the uniform distribution needs to be shifted by 18 percent on average; to equate
the log scenario an average shift of 29 percent is needed. The same explanation as above
applies. Note that the difference of the shifts between tri and log (29% − 18% = 11%)
is close to the 8 percent equivalence shift of the triangular distribution, and therefore
consistent with that earlier result.

Case 2 As before, the results in case of DEHP are different in soil and air opposed
to water and sediment. In the latter case, there is a large equivalence shift for the
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Figure 4.16: Impact of negative skewness (log and tri).
Plots display DEHP input distributions for KOW (left) and P0 (right). For each parameter, lognormal
and triangular distributions from Scenarios log and tri are given (solid lines). In addition, the shifted
triangular distribution that results in the same target variance than the lognormal distribution is given
(dashed lines). In the top row, the criterion is soil concentration variance, to which vapor pressure
contributes 50 percent, in the row below the criterion is water concentration variance where vapor pressure
has no influence. It is evident, that the negatively skew vapor pressure distribution created a larger shift
in case of the top row (soil) as opposed to the bottom row (water). Dash vertical lines indicate the mean
values of the distributions.
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Figure 4.17: Effect of shifting different coefficient of variation (CV).
In case of a smaller CV, the ranges covered by the shifted distribution and the original distribution differ
a lot more from each other than in case of a larger CV.

uniform distribution to equate the results of tri (20 percent and 18 percent in water and
sediment, respectively), and there is a relatively small extra shift necessary to equate log (8
percent and 9 percent, respectively). This is understandable, since the triangular and the
lognormal distributions are more similar to each other than to the uniform distribution.

The other two compartments soil and air show a different behavior. The equivalence
shift to equate uni and tri is 6 percent in soil. In the air compartment there is no
shift necessary, as the results from uni and tri are already almost identical (less than
0.5 percent difference). In this case the difference between tri to log is larger than the
equivalent shift for tri : 18 percent in case of soil, and 19 percent in case of air. Here, as
opposed to Case 1, results from the uniform distribution are closer to the results from the
triangular distribution. Again, the input distribution shapes provide an explanation. As
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Figure 4.18: Equivalence shifts for uniform distribution.
The bars give the percentage of the mean by which the uniform distributions need to be shifted to
produce the same target standard deviation as in case of triangular and lognormal distribution shapes.
Coefficients of determination (R2) are indicated as points above the bars of the bar chart, their values are
on the secondary y-Axis. In cases of air concentration of DEHP (tri and log) and sediment concentration
of EDC (just tri), no values could be computed (see text for details).

described before, the triangular distribution of vapor pressure is negatively skew whereas
the other parameter distributions are positively skew (Figure 4.19). Target variance in
case of uni is larger than target variance in case of tri , because a particularly sensitive
parameter range close to zero is covered with more probability mass by the uniform
distributions. Shifting the uniform distribution moves it out of this sensitive range. The
negatively skew triangular distributions covers the sensitive range less, hence the uniform
distribution needs to be removed further than in case of the positively skew triangular
distribution.

Case 3 As in the case of shifting triangular distributions, the equivalence shifts for the
parameter distributions of EDC and benzene are generally less than for dioxins or DEHP.
The same argument holds as above. Compared to the previous results, there is more
variation in the equivalence shifts. However, the precision of the method that was used
to derive these values is not high enough for these differences to be significant.

4.6.4 Conclusion

The equivalence shifts are summarized in Table 4.3. The relative sensitivity of shape and
mean can be assessed by comparing the equivalence shifts to the uncertainties about the
mean. In the following, two measures of uncertainty about the mean are considered.

One estimate of the uncertainty about the mean is the standard deviation of the mean
σx̄ = σ√

n
. The estimate sx̄ of σx̄ is included in Table 2.3 for the mean values estimated

in this study. They range from negligible (0.1 percent in case of EDC vapor pressure) to
about 100 percent of the mean (HpCDD vapor pressure), with an average of 46 percent. To
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Figure 4.19: Impact of skewness (tri).
The impact of skewness on equivalence shifts in case of DEHP. In the left picture, KOW parameter distri-
butions are shown with the necessary shift for the soil compartment, in the right picture, P0 parameter
distributions with the necessary shift for the water compartment are displayed. Vertical lines indicate
the distribution means. To equate the P0 triangular distribution, which is negatively skew, a larger shift
is necessary.

Table 4.3: Summary of equivalence shifts.
Percentages are percent of the input mean. In case 1 and in case 2, average values are given.

equivalence shift [%]

Case triangular→lognormal uniform→triangular uniform→lognormal

1. Dixions 8 18 29

2. DEHP 7–21 6-20 19-28

3. EDC/benzene 2 2 3

make these standard deviations comparable to the equivalence shifts, it may be necessary
to double or triple them. Compared to the largest equivalence shifts (about 30 percent),
the uncertainty expressed by the standard deviation of the mean is large. However the
uncertainty about the shape is not negligible, and in some cases even in the same order
of magnitude (benzene and EDC).

Table 2.3 also lists the means estimated by Berding et al. (2000) and the selected values
from Mackay et al. (1999). Considering the means estimated in this work, and their
standard deviations, the different estimates of the mean are not in agreement, e.g. in
case of OCDD vapor pressure there is a difference of four orders of magnitude to the
selected value from Mackay et al., in case of TCDD vapor pressures there is a difference
of two orders of magnitude to Berding et al. (2000). These differences can be attributed
to differences in the data basis as well as to the difference approaches (Section 2.4).
Nevertheless do they indicate an uncertainty about a ”best estimate” of the parameter that
is much greater than the standard error of the mean, estimated in this study. Compared
to these differences of ”best estimates” from different studies, the uncertainty expressed
in the equivalence shifts is marginal.

Hence whether to put more effort into estimating the mean, or into selecting the most
appropriate distribution type is determined by the uncertainty about the mean. When
the uncertainty about the mean is derived from the difference in literature values of
physico-chemical properties, which vary frequently by several orders of magnitude, then
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the impact of parameter distribution shape is marginal. However substance concentration
have been shown to be sensitive to changes in the input distribution type in some cases.
When the location of a parameter distribution is known with some confidence, then the
appropriate choice of a distribution type matters.

4.7 Generic Uncertainties

It has been shown in Chapter 2 of this work, that measurement data for KOW, aqueous
solubility SW, and vapor pressure P0 are scarce. For most substances, there is no sufficient
basis for reliable statistics. This is particularly problematic when estimating higher order
moments such as the variance and the coefficients of skewness and kurtosis, according to
Tukey’s 5k rule (Section 3.1).

In situations of scarce data, deterministic values for parameters are often set based on
expert opinion, sometimes collected measurement data are considered in addition. Ex-
amples are performing expert elicitation or utilizing so-called selected values in substance
handbooks, e.g. Mackay et al. (1999), i.e. values that are recommended by an expert.
Care must be taken, because every selection of a recommended value is aimed at a certain
use of the selected value, and selected values should not be used out of context.

In probabilistic uncertainty analysis, such expert opinion is a valuable clue on the loca-
tion of a parameter distribution and can by utilized in different ways to parameterize a
probability distribution. For example, it can be used as the median (Beyer and Matthies,
2001), or as the mean value of the distribution (McKone et al., 1995).

Attempts have been made to use a similar approach in regard to parameter uncertainty, i.e.
parameterization of the spread of parameter distributions. Default or generic measures
of variance have been proposed for substances where available data was insufficient to
warrant the use of statistics. In all cases the motivation to use a generic approach was lack
of sufficient data. The procedures differ in the degree of detail: the level of generalization
ranges from just one uncertainty for all parameters to distinct uncertainties for several
ranges of each parameter.

In the following sections, approaches used by Beyer and Matthies (2001), McKone et al.
(1995), MacLeod et al. (2002), and Jager et al. (1997) are presented and discussed. The
four cases share that they all apply to physico-chemical substance properties. The lineup
follows the order from the most general approach to more specialized proceedings.

4.7.1 One CV for All Substances

Beyer and Matthies (2001) derive generic input distributions to use with the ELPOS
model. ELPOS uses solubilities as physico-chemical properties in all cases, as opposed to
partition coefficients. For air, water, and octanol solubilities, lognormal distributions are
assumed. All other partitioning data, such as octanol-water partitioning coefficient, are
derived from these three solubilities. The medians are set to selected values.

Regarding uncertainties Beyer and Matthies take the most generic approach: one un-
certainty is assigned to all physico-chemical properties. The standard deviation σ on
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logarithmic scale is used to parameterize lognormal distributions. A value of σ=0.77 is
chosen to ensure that almost all probability mass of the lognormal distribution lies within
a range of plus or minus one order of magnitude; i.e. 99.7 percent lies within the range
from µ-3σ to µ+3σ where µ is the mean of the normal distribution on logarithmic scale.

Values of σ can be converted to coefficients of variation (CV) of the lognormal distribu-
tion.10 When applied here, σ=0.77 is found to be equivalent to CV=0.9.

4.7.2 Individual CV for Substance Properties

In the CalTOX model (McKone, 1993) physico-chemical properties of substances are
described by octanol-water partitioning coefficient, aqueous solubility, and vapor pressure.
For these, lognormal distributions are assumed, and parameterized with mean values and
coefficients of variation deduced from literature.

The preferred proceeding is to calculate CV by assessing the standard deviation among
the reported values individually for each substance. Highest priority is given to exper-
imental values reported in primary scientific literature (peer reviewed journals). Where
such values were insufficient, widely cited secondary references were also used. As a last
resort, estimation equations from primary literature (mostly quantitative structure activ-
ity relationships, QSAR) were used. From these data, mean and CV were calculated from
arithmetic mean and arithmetic standard deviation. In case of estimated input values,
means were calculated from the estimation equation. The CV was then derived from the
residual error of the estimation equation (McKone et al., 1995).

McKone et al. suggest a generic approach substances where only a few reported values
are available. For each parameter, the mean CV value among all substances, for which
CV were calculated, is calculated and given as the CalTOX default for that parameter.
CalTOX defaults are CV of 1.2 for octanol-water partitioning coefficient, 0.55 for aqueous
solubility, and 0.015 in case of vapor pressure.

MacLeod et al. (2002) use a very similar approach to McKone et al. (1995). Lognormal
distributions are assumed for aqueous solubility, vapor pressure, and for log KOW (as
opposed to KOW).

For the ChemCAN model (version 4.0, Trent University, Peterborough, ON, Canada)
generic confidence factors are recommended to be used ”in the absence of site- or situation-
specific data.” For comparison, the confidence factors 1.1, 1.5, and 1.5 for log KOW, aqueous
solubility, and vapor pressure, respectively can be converted to CV 0.05, 0.21, and 0.21.11

4.7.3 Several CV for each Substance Property

Jager et al. (1997) discuss the parameterization of the SimpleBox model (van de Meent,
1993; Brandes et al., 1996). Lognormal distributions are assumed for the physico-chemical

10CV =
√

exp (σ2) − 1 (Slob, 1994)

11CV =

√

exp
(

ln2 k
1.962

)

− 1 (Slob, 1994)
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substance properties. The location of the distributions is determined by setting the distri-
bution median to a deterministic value, i.e. a value that is believed to be the best estimate
of the true parameter value.

Jager et al. (1997) state that the uncertainty in physico-chemical properties may depend
upon the absolute value of the parameter. A possible reason is the difficulty to measure
a substance property, which changes with the value of the property (Mackay et al., 1999;
Beyer and Matthies, 2001).

When a generic CV is used as a measure of the uncertainty, this is already accounted
for: the CV depends on the distribution mean, it is inverse proportional to its value.
Hence if a fixed CV is assumed, the actual standard deviation is proportional to the mean
(standard deviation = mean×CV). In case of determining KOW, this is in accordance with
experience: accurate measurement of very large KOW, i.e. larger than 106, is a difficult task
(Mackay et al., 1999). But measuring very low vapor pressures is not particularly easy, in
fact vapor pressures below 1 Pa are generally difficult to measure. The same is true for
very low solubilities. These examples show that it cannot be assumed that uncertainties
are simply proportional to the absolute value, and that usage of CV alone is not enough.

Jager et al. address such dependencies by differentiating by parameter and distinguishing
two or three separate ranges of different uncertainties for each parameter.

The uncertainties were derived from a regression that uses about 25 representative sub-
stances,12 including TCDD, benzene, and DEHP. For all substances used, log KOW ranged
from -1 to 8, log SW ranged from -5 to 6, and log P0 from -7 to 6 (for solubility in mg/L,
and vapor pressure in Pa).

The residuals of the regression were plotted against the parameter value, and ranges of less
or greater scatter were identified using ”mainly visual judgment” (Jager et al., 1997). For
each of these ranges an uncertainty was then estimated. The estimates of the uncertainty
were based on 72 to 581 measurements that fell within the concerning range.

In case of the KOW, three ranges were identified: KOW with a log KOW less than 4 are
assigned a CV of 0.57, then up to a log KOW of 5.5 a CV of 2.0 was derived. All KOW

with log KOW greater than 5.5 are assigned a CV of 3.59. Aqueous solubility SW is divided
into two ranges, those SW with log SW less than zero and those greater than zero, the
corresponding CV are 2.0 and 0.47, respectively. Similarly there are two ranges for vapor
pressures P0 for log P0 less than zero, and greater than zero, here the corresponding
CV are 8.8 and 0.34. The trend of these ranges is in agreement with the theoretical
considerations made by Beyer and Matthies as mentioned above.

Jager et al. point out, that the quantification of the uncertainty is not based on neither,
an extensive literature search nor extensive consultation of experts. The CV are therefore
only preliminary but may provide a starting point for future activities.

4.7.4 Comparison of the Different Approaches

Table 4.4 shows a summary of CV used in the different approaches. In the table, the
approaches are organized by the level of detail, e.g. Beyer and Matthies is right to McKone

12In case of aqueous solubility, only 24 substances were used.
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Table 4.4: Different generic coefficients of variation.
Different generic coefficients of variation (CV) used for input parameter distributions for Monte-Carlo
Analysis. In case of MacLeod et al. the CV of log KOW is given instead of the CV of the KOW. CV in
case of Jager et al. are given in the order of the ranges they apply to i.e. high uncertainties for large KOW

and low values of SW and P0.

Jager et al. McKone et al. MacLeod et al. Beyer and Matthies

(log) KOW 0.57, 2.0, 3.59 1.2 (0.05) 0.9

SW 2.0, 0.47 0.55 0.21 0.9

P0 8.8, 0.34 0.015 0.21 0.9

et al. because the latter differentiates parameters types.

Discussion of Numerical Values

All approaches yield numerical values in the same order of magnitude; most CV are less
than or equal to 2.0. There are two exceptions to this, both are values derived by Jager
et al.: Their estimate of uncertainty for KOW with log KOW greater than 5.5 is a CV of
3.59, and their CV for vapor pressures less than 1 Pa is 8.8. In particular the latter value
seems to be unrealistically large: with a CV of 8.8, or equivalently an uncertainty factor
of 6.0 (Slob, 1994), values as high as six times the median fall into the central 95 percent
of the distribution. As noted above, Jager et al. stress that these CV are only preliminary
results and not based on an extensive literature search, nor extensive expert consultation.

Another estimate that has a surprising value is the CV from McKone et al. of P0. At
0.015 it is the lowest estimate among all CV considered here. The CalTOX default CV
values are found in the CalTOX spreadsheet13 (T. E. McKone, personal communication,
January 24, 2002). For use as a generic uncertainty, this estimate seems too low – in
cases where the P0 of a substance is known with a certainty that warrants using such
a low CV, then a generic assumption should not be necessary. Furthermore, in case of
substances with sufficient data, McKone et al. frequently estimate CV much larger than
0.015. Individual CV for P0 of substances in the CalTOX spreadsheet range from 0.005
to 1.9, with an average of 0.39.

Discussion of the Differences between Approaches

The uncertainty estimate of KOW from MacLeod et al. is excluded from the discussion
because estimates on log scales versus linear scales are not comparable.

When the CV from the different approaches are compared, the largest of the CV estimates
for each parameter from Jager et al. exceed all other CV. Furthermore, the lowest CV
from Jager et al. falls below most of the other CV (with the exception of the very low
P0 values from McKone et al., discussed above). Between McKone et al. and Beyer and
Matthies, the ”one for all” CV from Beyer and Matthies is larger than the CV for P0 and
SW from McKone et al. and lower than their CV for KOW.

13CalTOX is available at http://www.cwo.com/∼herd1/caltox.htm
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Therefore, the more general approaches are not always conservative compared to more
specific approaches. In order to be conservative, the CV from more general approaches
need to exceed all specific uncertainties, e.g. a ”one for all” CV had to be larger than
8.8. The different approaches are consistent in another sense though. Rather than being
conservative, they are representative to a certain extent, i.e. the more general approaches
fall within the ranges set by the more specific estimates (Beyer and Matthies falls within
the estimates from McKone et al. for individual parameters, and CV from McKone et al.
fall within the ranges from Jager et al.).

The approaches from McKone et al. and MacLeod et al. apply to the same level of detail,
i.e. they derive individual uncertainties for substance properties. However, they differ
significantly in the numerical values they suggest, e.g. the aqueous solubility CV differ by
more than a factor of two. This disagreement is no exception, on the contrary, several
values such as the CV for vapor pressure are so far apart across different approaches, that
they indicate that there is no consensus within the scientific community about generic
uncertainties.

Finally, when data needs of the approaches are compared, a disadvantage that the ap-
proach of Jager et al. bears is that its data requirements are greater than those of the
other procedures. The uncertainty attached to each range of a parameter is derived sta-
tistically from collected measurement data. Since the data falls into as many groups as
there are ranges per parameter, only a fraction of the data can be used for each range, as
opposed to approaches that do not differentiate this far.

Simulation Results from Generic Approaches

Simulations were performed to evaluate the different approaches of assigning generic un-
certainty. Two settings were explored:

1. Three of the above approaches from literature were applied to the eleven substances
investigated in this study: Beyer and Matthies (2001); McKone et al. (1995); Jager
et al. (1997). As in the original works, lognormal distributions were assumed for
all physico-chemical substance parameters. Parameter distributions were parame-
terized with the CV listed in Table 4.4 and the recommended (selected) value from
Mackay et al. (1999) as either the mean (in case of McKone et al., 1995) or the me-
dian (Beyer and Matthies, 2001; Jager et al., 1997), depending on how the original
authors parameterized their distributions.

2. Parameter distributions were parameterized with coefficients of variation (CV) vary-
ing from 0.01 to 3.0. To determine the location of the distribution, the recommended
value was set either to

(a) the mean of the lognormal distribution (fixmean) or

(b) the median of the lognormal distribution (fixmedian).

In each scenario, the same CV was used for all physico-chemical substance param-
eters.
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The generic approaches allows to add the substances LAS, EDTA, and HHCB to the set
of chemicals considered. While they are treated in Berding et al. (2000) along with the
other substances addressed in this study, they were omitted here until now, because the
data basis was not sufficient to apply the same procedure of parameterization to these
chemicals. Results from simulations 1 are shown in Table 4.5. Results from simulations
fixmean (2a) and fixmedian (2b) can be found in Tables B.3 and B.4, respectively. The
latter simulations were carried out in order to have controlled and more abstract scenarios
for comparison and interpretation of the former.

A comparison of simulation of the Scenarios fixmean and fixmedian revealed, that whether
the location of the distribution is set via the mean or the median, does make a difference
in the variation of the target value. In the majority of cases, the differences from using
mean versus median are rather small (less than 0.1) but occasionally they are as large
as 1.6. Target CV that result from using the mean are about as often larger than their
counterparts, as they are lower than their counterparts. Differences resulting from param-
eterization via the mean or via the median were also found in the sensitivity of the target
CV for changes of the input CV, e.g. raising a CV from 1.5 to 2 can have different effects
depending on whether the input distribution’s location was determined via the mean or
the median. Recall that Jager et al. and Beyer and Matthies use the median, whereas
McKone et al. parameterize via the mean, hence differences in target CV may also result
from this aspect of parameterization.

In Table 4.5, coefficients of variation (CV) of target distributions computed with the
generic approaches range from 0.00 to 1.74 (EDC in soil, Beyer) for the substances con-
sidered in the previous sections. In most cases they are considerably larger than the target
CV in case of the comparable Scenarios uni , tri , and log (Table B.5), which have an upper
bound of approximately 0.58 due to the parameterization procedure (Section 4.2). This is
explained by differences of the input distributions: the substance specific and parameter
specific input CV in case of the comparable scenarios are generally lower than the generic
CV assumed here (average input CV over all substances are 0.47 in case of KOW, 0.28 for
SW, and 0.38 for P0). Among the three additional substances in this section (LAS, EDTA
and HHCB), CV go up to 28 and even 74. An explanation for these extreme values is
the great sensitivity of air concentration to aqueous solubility. The extreme output un-
certainty is therefore caused by the large CV suggested by Jager et al. for vapor pressure.
The fixmedian scenarios have shown larger than average CV for all input CV in these
cases, which supports this claim.

The target CV in Table 4.5 also confirm that none of the approaches is generally more
conservative than another. Each of the approaches results in the highest, the lowest and
the middle target CV in some cases. On the average, the approach by Jager et al. leads to
larger uncertainties than McKone et al. and Beyer and Matthies . The latter two result
in similar average CV.

To assess the quality of the generic parameterization approaches presented above, one
could try verifying the simulation results. It seems impossible to verify the results in
Table 4.5 though, because the variation in field measurements of substance concentration
is determined by variability in the environmental conditions more than by measurement
error. In contrast, the generic input uncertainties represent true uncertainty about the pa-
rameters to a large extent. A more apt way to assess the validity of the generic approaches
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Table 4.5: Target CV from generic approaches.
Results of simulations with different generic uncertainties. Presented are the coefficients of variation
(CV) of environmental concentrations. Only physico-chemical parameters were varied, of those, the most
sensitive for every substance and compartment is given, measured in contribution to variance in the Beyer
scenario. As the Beyer scenario assumed the same input uncertainties for all parameters, the parameter
with largest contribution to variance the Beyer scenario is the most sensitive parameter for all scenarios.

most soil most water

sensitive Jager McKone Beyer sensitive Jager McKone Beyer

TCDD P0 1.29 0.04 0.59 P0 0.87 0.24 0.36

PeCDD P0 0.48 0.02 0.22 KOW 0.48 0.25 0.19

HxCDD P0 0.30 0.00 0.12 KOW 0.49 0.22 0.14

HpCDD P0 0.13 0.00 0.02 KOW 0.39 0.18 0.10

OCDD P0 0.06 0.00 0.01 KOW 0.29 0.14 0.07

DEHP KOW 0.05 0.01 0.01 KOW 0.41 0.15 0.14

EDC SW 0.92 1.70 1.74 P0 0.21 0.20 0.53

benzene KOW 0.84 1.57 1.42 P0 0.05 0.05 0.12

LAS KOW 0.46 0.91 0.70 KOW 0.00 0.00 0.00

EDTA KOW 6.77 0.57 0.75 SW 0.00 0.00 0.00

HHCB KOW 1.15 0.83 0.76 P0 1.03 0.38 0.70

average 1.13 0.51 0.58 0.38 0.16 0.21

most sediment most air

sensitive Jager McKone Beyer sensitive Jager McKone Beyer

TCDD P0 0.72 0.35 0.36 P0 0.11 0.00 0.36

PeCDD P0 0.30 0.12 0.12 P0 0.21 0.01 0.12

HxCDD P0 0.20 0.05 0.06 P0 0.19 0.00 0.06

HpCDD KOW 0.11 0.03 0.02 P0 0.11 0.00 0.02

OCDD KOW 0.10 0.03 0.02 P0 0.10 0.00 0.02

DEHP KOW 0.26 0.19 0.13 KOW 0.03 0.01 0.13

EDC SW 0.28 0.39 0.64 P0 0.00 0.00 0.64

benzene KOW 0.32 0.59 0.52 P0 0.01 0.01 0.52

LAS KOW 0.05 0.08 0.07 SW 28.33 1.40 0.07

EDTA KOW 0.00 0.00 0.00 SW 73.63 1.32 0.00

HHCB SW 1.14 0.77 0.83 SW 0.47 0.12 0.83

average 0.32 0.24 0.25 9.38 0.26 0.25
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would be to compare the generic assumptions with substance specific uncertainties de-
termined with more sophisticated approaches. For example, the average of the eight
estimated uncertainties from this work (average CV of 0.49, 0.25 and 0.41 for parameters
KOW, SW and P0) or averages over all 78 substances in the CalTOX data spreadsheet
(average CV of 0.38, 0.39 and 0.38 for parameters KOW, SW and P0) could be used.

Compared to the CalTOX averages, the ”one for all” approach from Beyer and Matthies
is conservative since those CV are more than twice as large. Furthermore, the average
values are similar for all parameters, which is in agreement with this approach. The
parameter specific estimates from McKone et al. and MacLeod et al. vary around the
CalTOX averages, but they remain within the same order of magnitude. The exception is
the very low P0 (0.015), that is critical in this aspect. The lowest CV for each parameter
from Jager et al. (0.57, 0.47 and 0.34) are in good agreement, while the larger estimates
deviate by one order of magnitude and more from the CalTOX averages, which may be
interpreted as conservative. A certain degree of conservatism is appropriate for generic
approaches, especially in comparison to average values, since averages underestimate some
of the specific values by their nature. When these deviations from the reference case of
CalTOX averages are used to rank the quality of the approaches, care must be taken
whether the reference data are representative for the chemicals that the generic approach
will be applied to.

4.8 Comparing Different Parameterization Strategies

Results from the previous section were often of a technical nature, in particular the compa-
rable scenarios, which are not realistic but technical examples. Therefore, in this section
additional scenarios are computed to put results from this study into perspective with
realistic strategies and evaluate results from this study in that context. The parameteri-
zation strategies discussed in this section are in part from real life examples, e.g. berding
is taken from Berding et al. (2000). Others are parameterization strategies that were
discussed or derived in this study.

Scenario berding This scenario is taken from Berding et al. (2000). Lognormal dis-
tribution shapes are assumed for physico-chemical parameters, and parameterized
through a statistical analysis of literature data. The resulting parameters of the
lognormal distribution are summarized in Table 2.3 (means) and in Table 4.6 (CV).

Scenario lognormal In a mixed approach, lognormal distributions are parameterized
using expert values for means, and statistical analysis for the variance. Means are
set to selected values from Mackay et al. (1999) (Table 2.3), and the variance is
derived from the coefficient of variation estimated on the data basis of this study
(Chapter 2). The resulting CV are presented in Table 4.6.

Scenario triangular It is questionable whether the data basis of this study is sufficient
for statistical estimations as they were performed for the previous scenario. Sce-
nario triangular presents an alternative to the use of statistics. Similar to Scenario
tri (Section 4.2), triangular distributions are parameterized from a selected value
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(Mackay et al., 1999) as the mode, and minimum and maximum literature values
for lower and upper bounds. In contrast to Scenario tri , here the distributions were
not shifted to allow for the comparable uni and log scenarios to be constructed.

Scenario generic All the above scenarios exploit literature data to estimate the parame-
ter uncertainty. Section 4.7 explored approaches that rely on generic assumptions as
opposed to measured data. The approach suggested by Beyer and Matthies (2001)
is implemented in the generic scenario by parameterizing lognormal distributions
with mean values as selected in Mackay et al. (1999) and a common CV of 0.9.

Examples of the parameter distributions are presented in Figure 4.20. Both, the lognormal
distribution from Scenarios berding and lognormal are very skewed, with the mean at the
same location as the 77th percentile and the 74th percentile, respectively. In the remainder
of this section, four combinations of these scenarios are explored.

1. Scenarios berding and lognormal , which differ in the selection of the mean, and the
data basis used (Section 4.8.1)

2. Scenarios lognormal and triangular , which are based on the same data, but derive
different uncertainties and distribution types from the data (Section 4.8.2)

3. Scenario generic is compared to all of the above (Section 4.8.3)

4. While only the physico-chemical parameters are varied in the above combinations,
simulations varying all parameters were performed for all four scenarios (Section
4.8.4)

4.8.1 Different Parameterization Based on the Same Literature Data

In the Scenarios berding and lognormal , parameter distributions are set to the same
distribution type, i.e. to lognormal probability distributions. The parameter distributions
differ between the scenarios in their means (Table 2.3) and the CV (Table 4.6). In Scenario
berding , the means are estimated, while the selected values from Mackay et al. (1999) are
used in Scenario lognormal . The CV are estimated in both parameterization approaches,
yet the data bases are different even though they are derived from similar literature sources
(Chapter 2). These differences cause in turn differences in the location and the CV of the
computed target distributions. Comparing these two scenarios helps to understand how
an improved data selection process might change the result.

Simulation Results

Cumulative distribution functions (CDF) were compared for all target values, Figure 4.21
shows two examples. The resulting CDF differ in two aspects, namely the location of the
curves (e.g. measured by the distance of the medians), and the uncertainty represented by
the slope and spread of the CDF. For example, the CDF of benzene in Figure 4.21 show a
large difference of their medians, while the CDF are almost parallel, which indicates that
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Figure 4.20: Exemplary parameter distributions.
Example parameter distributions from the Scenarios berding , lognormal , triangular , and generic. All
distributions range from the 0.001 quantile to the 0.85 quantile (i.e. the 85th percentile) except for the
triangular distribution, which is shown in totality. For each distribution, the mean value is indicated. The
mean and the mode deviate the most in Scenario berding , then lognormal , generic, and finally triangular ,
and the distributions are less skewed in the same order.

Table 4.6: Coefficients of variation.
Coefficients of variation (CV) used in the Scenarios berding and lognormal . Scenario generic uses a CV
of 0.9 in all cases, and Scenario triangular has CV lower than 0.6 for theoretical reasons (Section 3.2.6).

CV berding

substance KOW SW P0

TCDD 4.09 0.76 2.47

PeCDD 1.19 2.22 0.76

HxCDD 1.50 0.95 2.55

HpCDD 1.80 2.31 1.92

OCDD 2.77 2.98 1.48

DEHP 3.16 3.00 2.55

EDC 0.29 0.03 0.09

benzene 0.40 0.31 0.07

average 1.90 1.57 1.49

CV lognormal

substance KOW SW P0

TCDD 1.95 1.70 2.09

PeCDD 1.16 0.28 2.09

HxCDD 1.09 0.18 1.39

HpCDD 1.17 0.05 1.40

OCDD 1.99 2.20 1.17

DEHP 2.23 0.57 1.89

EDC 0.36 0.06 0.00

benzene 0.32 0.05 0.03

average 1.28 0.64 1.26
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Figure 4.21: Cumulative Distribution Functions.
Example cumulative distribution function (CDF) of Scenarios berding and lognormal : benzene concentra-
tion in water and DEHP concentration in soil. The benzene plot illustrates how differences in uncertainty,
i.e. the spread of the CDF, are exceeded by differences in the location of the CDF, particularly the me-
dians. The CDF of DEHP concentration show an exception to that typical case: a large difference in
uncertainty of the input distributions results in CDF that are both different in slope and different in
location. Here, the difference in shape exceed the deviation of the medians.

the variation of the target values is similar. The medians in case of DEHP are relatively
close, compared to the deviation of the shape of the CDF.

Whether a difference in input means has an impact on the target mean depends on
the specific importance of the parameter, e.g. the difference of benzene KOW (1.32e+2
versus 1.52e+2, Table 2.3) has an effect, as the KOW is the most influential parameter for
benzene concentration in water (Figure 4.21). In contrast, a similar difference in case of
EDC (2.88e+1 versus 3.02e+1) has no effect because here the KOW is not sensitive. In
this case, there is almost no deviation between sensitive input means (SW and P0), and
the target CDF are also almost identical in all compartments (not displayed).

DEHP concentration in soil is an example of a target value where both mean and CV
of the prominent parameter KOW differ significantly (input CV are 3.16 and 2.23, and
input means are 3.0e+7 and 3.5e+8, in case of berding and lognormal , respectively).
Consequently, the target CDF (Figure 4.21) differ in location and in spread.

Overall, the differences in target location exceed the differences in target variation in most
cases. From visual judgment of the CDF plots, the deviation of the shapes is larger than
the difference of their locations only in the one case of DEHP. In all other cases the two
aspects were at least similarly important, in more than half of the cases the difference in
location is clearly larger than the difference in the shape of the CDF. Thus a different
selection process for the input data has a smaller effect on the result than a different way
of parameterizing a distributions location.

4.8.2 A Statistical versus a Subjective Approach

The two parameterization approaches compared in this section (lognormal versus triangu-
lar) rely on the same data, namely the data basis from Chapter 2 and the selected values.
The locations of the parameter distributions are similar in both approaches. However
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since the selected values are used as the mean in the lognormal distributions and as the
mode in triangular distributions they are not the same. Moreover as discussed earlier,
the CV of triangular distributions in the triangular scenario is limited to stay below ap-
proximately 0.7. The estimated CV used in the lognormal scenario are up to three times
as large (Table 4.6).

Simulation Results

Interesting aspects of the computed target distribution are their location and spread,
and in particular their shape since different distribution types were used for parameter
distributions. The computed target distributions were compared on the basis of their
frequency distributions. Frequency distributions are histograms of Monte-Carlo shots,
thus they provide a very direct way to assess the target distribution’s shape.

Figure 4.22 shows four examples of frequency distributions in the sediment compartment,
which represent the range of different results from the simulation. As the plot of HpCDD
indicates, the differences between Scenarios lognormal and triangular can be dramatic.
Explanations for the differences between substances are provided by the functional de-
pendencies of input parameters and computed concentrations (Figure 4.3). The curves in
Figure 4.3 apply to the tri scenario, which is the triangular scenario, but shifted. Thus
the actual curves for the triangular scenario might differ slightly. In the following, these
explanations are applied to the four typical cases in Figure 4.22.

1. EDC is an example for near-linear functional dependencies (Figure 4.3G). Hence
the triangular and the lognormal input distribution shapes are mapped to target
distributions of similar shape to their input distributions: the target distribution of
Scenario triangular resembles a triangular distribution, and the target distribution
of Scenario lognormal resembles a lognormal distribution. The triangular distri-
bution for the most influential parameter in sediment, KOW, is positively skewed.
Hence its mode is left of its mean. Since the mode of the triangular distribution and
the mean of the lognormal distribution are set to the same value, the location of
the triangular input distribution is to the right of the lognormal distribution. This,
too, is reflected in the target distributions.

2. In case of DEHP, the lognormal distributions get spread out over a large range, while
the triangular distribution has only a small spread. The functional dependency curve
in Figure 4.3F changes with larger parameter values from a very steep curve to an
almost constant curve. Just like the KOW input distributions for EDC, the triangular
input distributions for DEHP are to the right of their lognormal counterparts. The
steep part of the curve spreads the lognormal curve out over a wide range of target
values, while the triangular distribution covers the almost constant part of it, which
maps it to a narrower interval.

3. Similar to the previous case, the slope of the functional dependency curve of P0 of
HpCDD changes from steep to gentle. Unlike the case of DEHP, the curve is de-
creasing. A decreasing curve mirrors the input distributions (Figure 4.11), thus the
target distribution of Scenario triangular is found the left of the target distribution
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Figure 4.22: Frequency distributions.
Frequency distributions from Scenarios lognormal and triangular for EDC, DEHP, HpCDD and TCDD
in the sediment compartment. The differences between substances can be explained from the functional
dependencies (Figure 4.3).

from the lognormal scenario. The distance between the target distributions may be
due to the larger overall variation in case of HpCDD compared to DEHP (about 30
percent compared to about 15 percent, see the y-axes in Figure 4.3).

4. The target distributions in case of TCDD look similar to the case of EDC, notice
though, that they cover ranges of several orders of magnitude unlike the case of
EDC. In contrast to the case of EDC, the functional dependency curves of TCDD
are very nonlinear (Figure 4.3A). What distinguishes TCDD from the cases of DEHP
and HpCDD is that several input parameters are sensitive, and the functional de-
pendencies are almost symmetric about the base case. Hence the distance between
input distributions is not stretched when mapped to the distance of the target dis-
tributions.

4.8.3 How Realistic is the Generic Approach?

In the generic approach suggested by Beyer and Matthies (2001) parameter uncertainty is
represented by a CV of 0.9 regardless of substance and parameter type. Furthermore, the
lognormal distribution is selected a priori. In addition to these considerations, Scenario
generic uses the selected values (Mackay et al., 1999) as distribution means, and hence
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(as discussed in the previous sections) the location of the input distributions is similar to
Scenario lognormal , and deviates from Scenarios berding and triangular .

The generic CV may be considered representative if it is similar to the specific CV from
the other scenarios. Compared to the average CV from Scenarios lognormal and berding
(Table 4.6) a generic CV of 0.9 underestimates the parameter uncertainty in most cases,
while compared to Scenario triangular , where input CV are all less than 0.7, the input
uncertainties are overestimated.

Simulation Results

Some comparative plots with CDF from all scenarios are presented in Figure 4.23. Two
examples are given, where the generic scenario is indeed representative, i.e. the result
from the generic scenario is an average case compared to the other scenarios (TCDD in
water and HxCDD in sediment). In case of HxCDD concentration in sediment, the CDF
are far apart in their location. This is due to different locations of the input distributions,
hence it is irrelevant when comparing generic uncertainties to specific uncertainties. In
the other two examples shown in Figure 4.23, the generic scenario underestimates the
uncertainty computed in the other scenarios (EDC in soil) or overestimates the target
uncertainty (DEHP in soil). Hence no general statement could be made.

4.8.4 Scenarios with many Probabilistic Parameters

The aim of this section is to assess whether the differences between the scenarios that
are discussed above prevail when many parameters are varied. Unlike before, now all
probabilistic parameters from Berding et al. (2000) are varied (about 50 depending on
the mode of entry, Tables B.1 and B.2). Simulations were performed for all of the above
scenarios.

Simulation Results

Cumulative density functions (CDF) for all substances and scenarios were compared to the
corresponding CDF plots from the previous sections. The effects in the simulation results
due to varying many parameters (as opposed to three) are similar for all substances and
may be discussed using just one example. The soil concentration of benzene was selected,
CDF and frequency plots are shown in Figure 4.24. There are visible effects on the
location, spread and shape of the target distributions.

All target distributions appear shifted towards larger values. This effect can be attributed
to switching from deterministic values to probability distributions for about 50 additional
parameters. For example half lives and emission rates are modeled by positively skew
triangular distribution with the mode set to the former deterministic value. These as-
sumptions both result in higher environmental concentrations.

The overall uncertainty represented by the spread of the target distributions has increased
significantly, due to the increase in uncertain input parameters. Often the range covered
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Figure 4.23: Comparison of generic scenario to others.
Examples from the comparison of the generic scenario to the other scenarios. TCDD concentration in
water and HxCDD concentration in sediment in the top row are examples of the representativeness of
the generic scenario. Here the corresponding CDF fall in-mid the other scenarios. EDC and DEHP
concentrations in soil are examples where the assumptions of Scenario generic over- or underestimate the
uncertainty of one or more of the specific scenarios.

by the target distributions increased by several orders of magnitude. Moreover, the dif-
ferences between the target uncertainties from the different scenarios has become less.
While the benzene CDF from Scenarios triangular and lognormal are steeper than the
CDF from berding and generic, respectively, in the calculations from the previous sec-
tions, the slopes are almost identical now. It can be concluded, that the uncertainty about
input CV of the physico-chemical substance parameters have only a marginal influence
when many parameters are varied.

The CDF in Figure 4.24 suggest that the shapes of the target distributions are almost
identical. Among the displayed CDF, the two from Scenarios lognormal and generic
differ the most. In order to examine their shapes closer, the corresponding frequency
distributions have been included in the figure. The resulting shapes are indeed very
similar and both resemble lognormal distributions. This is in agreement with the results
from Section 4.5, which suggest that the target distributions will converge to lognormal
distributions when a large number of input parameters is simulated probabilistically.
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Figure 4.24: Few versus many probabilistic parameters.
Comparison of results from simulations with three (top) versus 50 (bottom) probabilistic parameters. Soil
concentration of benzene is selected as an example.



Chapter 5

Conclusions

Exposure assessment is frequently performed by computing predicted environmental con-
centrations (PEC) via multimedia models. Multimedia models, e.g. the SimpleBox model,
are based on parameters discribing the environment, and parameters describing sub-
stance properties, i.e. their emission, degradability and partitioning behavior. Information
about the partitioning behavior is often reduced to three physico-chemical properties: the
octanol-water partitioning coefficient KOW, aqueous solubility SW, and vapor pressure P0.
Parameterization of input distributions for KOW, SW and P0 for a probabilistic exposure
assessment is the main focus of this study.

It was shown in Chapter 2 that measurement data for KOW, SW, and P0, are scarce for
the chemicals under investigation. A data basis was selected from the available literature
values by applying a set of selection criteria to ensure a certain reliability of the data.
The resulting data basis is small and for most substances, there are insufficient data for
reliable statistics. This is particularly problematic when estimating higher order moments
of parameter distributions, such as the variance and the coefficients of skewness and
kurtosis. Hence there are large uncertainties about the choice of a distribution type of
parameter distributions for a probabilistic assessment.

5.1 Distribution Type

The influence of the choice of different input distribution types was assessed. In particular,
the impact on target mean, target variance, and target shape are described and compared.

Informational Content According to Maximum Entropy Theory

The investigated distribution types uniform, triangular, and lognormal represent different
states of knowledge or different amounts of information. According to maximum entropy
theory, all three distributions can be considered to reflect maximum uncertainty for certain
boundary conditions. The information contained in the boundary conditions increases
from uniform to triangular and lognormal.

99
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The uncertainties of the target value computed in the scenarios with uniform, triangular,
and lognormal parameter distributions conform to this ranking. The variance of the target
distributions is never significantly less for parameter distributions of greater informational
content.

Functional Dependency Plots

During the discussion and interpretation of the individual simulation results, plots of the
local functional dependency of parameters and target values have proven to be very useful
to explain inter-scenario and inter-substance differences. Functional dependency plots aid
the identification of sensitive parameter ranges and help to understand how different input
parameter distributions relate to the results of Monte-Carlo simulations.

Target Mean and Target Variance

The impact of different assumptions about the shape of the parameter distributions on
target means is almost negligible, while the impact on target variance is significant. Mea-
sured in percent of the target mean, the impact on variance exceeds the impact on target
means by about one order of magnitude. The target variance is therefore more sensitive
than the target mean, the target mean is almost insensitive to parameter distribution
types.

Quantifying the Impact

Uncertainty about the distributional shape of the parameters has been compared to un-
certainty about the mean. The impact of assuming different distribution shapes is com-
parable to a variation of the mean of up to 30 percent. The impact in these terms was
relatively large in cases where the parameter ranges covered by two input distributions
differed in places with a large local sensitivity. Compared to the uncertainty about the
mean value of the data used in this study (standard error of the mean), the impact of the
shape is significant. However, compared to the large deviation between locations of the
used input distributions, the impact is marginal. Hence, the choice of a distribution type
is only of concern, when the uncertainty about the mean is of a comparable magnitude
(i.e. about 30 percent or less).

Target Shape

The sensitivity of the target distribution shape to different assumptions about parameter
distributions depends on the number of probabilistic parameters. The sensitivity to a
single parameter decreases with an increasing number of probabilistic parameters. Simu-
lation results also suggest that the impact of the input shape on the target distribution
shape is larger in case of near-linear functional dependencies of parameter and target
value, than in case of non-linear functional dependencies. The effect of linear functions is
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only to mirror and to scale the input distribution, while non-linear functional dependen-
cies additionally result in a distortion of the input distribution. A distortion caused by
the non-linearity might marginalized the differences due to different distributional shapes
of parameters and harmonize the target distributions.

Recommendation

The above conclusions indicate that distribution shapes can have a significant impact on
the output distributions. In the cases considered, the sensitivity on the input distribu-
tion’s shape mainly depends on the sensitivity across input parameter ranges, expressed
by the functional dependency of parameter and target value. Hence, it is crucial for
parameterization of input distributions to be conscious of the parameter range that the
distribution covers. Therefore I recommend using intuitive parameterization approaches
and visualizing the resulting distributions to double-check whether they are in agree-
ment with the expectations or intentions. Examples following this idea are using median
and coefficient of variation to parameterize lognormal distributions (Section 3.2.3), and
constructing subjective distributions using modified beta distributions (Section 3.2.5).

5.2 Generic Uncertainties

Another influence on the computed target distribution besides the shape of the param-
eter distribution is its dispersion. As noted above, less data are required to estimate
the variance than characteristics of the shape. Still, the data situation in this study is
mostly insufficient for a statistical derivation of the variance. Therefore, the use of default
uncertainties has been evaluated.

In situations of scarce data, deterministic values for parameters are often selected based
on expert opinion. One example is the selection of ”best values” by Mackay et al. (1999).
In probabilistic uncertainty analysis, the expert opinion on the deterministic value of a
parameter provides a valuable clue on the location of the corresponding parameter distri-
bution. This information can by utilized in different ways to parameterize a probability
distribution, e.g. the expert value can be used as mean or median.

Approaches in Literature

Recently, attempts have been made to use a similar approach with parameter uncertainty,
i.e. parameterization of the spread of parameter distributions. Default, i.e. generic, mea-
sures of variance have been proposed for substances where available data was insufficient
to warrant the use of statistics. Four approaches are compared in this study. They differ
in the degree of detail: the level of generalization ranges from just one uncertainty for all
parameters to distinct uncertainties for several ranges of each parameter.

The input uncertainties assumed in the different approaches were compared, and simula-
tions were performed to assess the effects on target distributions. The numerical values
of the input uncertainties were mostly in the same order of magnitude. The more general
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input uncertainties are not conservative in the sense that they do not assume larger uncer-
tainties compared to more specific approaches. However the more general approaches are
representative in the sense that they assume input uncertainties, which lie mostly within
the values suggested in the more specific approaches. This is confirmed by the results of
the simulations.

Overall the deviation among the assumed generic uncertainties is large. It is concluded
that there is no consensus about default uncertainties. But considering the benefits of
generic uncertainties, such as comparability of the results and avoiding statistical analysis
on small data sets, the concept of default values for uncertainty should be further pursued.
A possible enhancement could be to combine ideas of the approaches presented in this
study: To use different CV for different ranges of a parameter, but to determine the ranges
and the uncertainties attached to them not from statistics but from expert judgment
because statistics have resulted in uncertainties that seem unrealistic. Expert judgment
could take into consideration at which values a parameter becomes difficult to measure,
e.g. due to measurement methods, as well as the existing literature data.

5.3 Parameterization Strategies in Comparison

Four pairs of scenarios, each representing a potential way of parameterizing input distri-
butions, have been compared and analyzed in view of previous results from this study.
Often there was no uniform effect on the target distributions, but some general trends
were found, and exceptions to them could be understood.

Reducing the data basis to ”reliable” values, and setting the parameter mean to an expert
value, as opposed to estimating the mean, both had an impact on the target distribution.
Mostly the impact on the location was stronger than the impact on the uncertainty of
the target value. Hence, correct parameterization of the mean is more important in this
setting than the estimation of the parameter uncertainty.

Two different parameterization strategies using statistics and expert judgment in different
ways and to different degrees resulted in visually extremely different parameter distribu-
tions. The differences of the computed target distributions are dramatic in some cases.

A generic parameterization strategy resulted in target distributions that were similar to
more specific approaches in many cases. However there was no general trend, the generic
approach both under- and overestimated the uncertainty in the specific approaches in
some cases.

When about 50 parameters were simulated probabilistically, the differences in the uncer-
tainty of the target value decreased, and the shapes of the target distributions became
more similar. As it can be expected from theoretical considerations (Section 4.5) the
distribution approaches a lognormal distribution as a larger number of input parameters
is simulated probabilistically.

It can therefore be concluded that most effort should be made to determine the location of
the parameter distributions as closely as possible. The spread of the parameter distribu-
tions and their shape are less influential especially when a large number of parameters is



5.3. PARAMETERIZATION STRATEGIES IN COMPARISON 103

simulated probabilistically. Their lesser impact becomes important once the uncertainty
about the location is decreased to a comparable order of magnitude. In the explored
settings, generic approaches yield results that are similar to more specific approaches and
are thus deemed to be sufficient.
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Appendix A

Additional Figures

A.1 Target Mean

Figure A.1: Target means in soil
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Figure A.2: Target means in water

Figure A.3: Target means in air
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A.2 Target Variance

Figure A.4: Target variances in soil

Figure A.5: Target variances in water
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Figure A.6: Target variances in air



Appendix B

Additional Tables

Table B.1: Mode of entry (continental scale)

emission into

air [%] waste water [%] surface water [%] industrial soil [%]

TCDD 100 0 0 0

PeCDD 100 0 0 0

HxCDD 96 4 0 0

HpCDD 95 5 0 0

OCDD 79 21 0 0

DEHP 100 0 0 0

EDC 81 19 0 0

benzene 92 7 0 1

LAS 0 99 0 1

EDTA 0 99 0 1

HHCB 0 100 0 0
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Table B.2: Mode of entry (regional scale)

emission into

air [%] waste water [%] surface water [%] soil [%]

TCDD 100 0 0 0

PeCDD 100 0 0 0

HxCDD 96 4 0 0

HpCDD 95 5 0 0

OCDD 79 21 0 0

DEHP 68 32 0 0

EDC 81 19 0 0

benzene 84 9 2 5

LAS 0 99 0 1

EDTA 0 99 0 1

HHCB 0 100 0 0
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Table B.3: Target CV of varied input CV. Lognormal distributions are used as parameter distribution,
parameterized with the selected value as distribution median, and the coefficient of variation as indicated
in the table columns.

most soil most water

influent. 1.0 2.0 3.0 influent. 1.0 2.0 3.0

TCDD P0 0.65 1.04 1.16 P0 0.38 0.60 0.72

PeCDD P0 0.23 0.34 0.41 KOW 0.21 0.35 0.44

HxCDD P0 0.13 0.19 0.23 KOW 0.16 0.28 0.39

HpCDD P0 0.03 0.05 0.08 KOW 0.12 0.24 0.31

OCDD P0 0.01 0.02 0.03 KOW 0.08 0.19 0.26

DEHP KOW 0.01 0.02 0.04 KOW 0.15 0.25 0.36

EDC SW 1.70 2.71 3.40 SW 0.58 1.15 1.35

benzene KOW 1.37 2.13 2.37 SW 0.14 0.28 0.43

LAS KOW 0.75 1.24 1.52 KOW 0.00 0.00 0.01

EDTA KOW 1.01 3.27 2.71 P0 0.00 0.00 0.00

HHCB KOW 0.79 1.01 1.14 SW 0.72 0.93 1.03

average 0.61 1.09 1.19 0.23 0.39 0.48

most sediment most air

influent. 1.0 2.0 3.0 influent. 1.0 2.0 3.0

TCDD P0 0.39 0.55 0.64 P0 0.03 0.06 0.08

PeCDD P0 0.13 0.21 0.27 P0 0.10 0.15 0.18

HxCDD P0 0.07 0.13 0.15 P0 0.08 0.12 0.14

HpCDD KOW 0.02 0.05 0.08 P0 0.02 0.04 0.06

OCDD KOW 0.02 0.06 0.08 P0 0.02 0.03 0.06

DEHP KOW 0.14 0.20 0.24 KOW 0.01 0.01 0.02

EDC SW 0.69 1.45 2.78 SW 0.01 0.02 0.03

benzene KOW 0.53 1.14 1.71 SW 0.02 0.02 0.02

LAS KOW 0.08 0.16 0.22 SW 4.25 9.20 10.13

EDTA KOW 0.00 0.00 0.00 SW 18.83 28.17 10.99

HHCB KOW 0.87 1.06 1.13 SW 0.27 0.41 0.47

average 0.27 0.45 0.67 2.15 3.48 2.02
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Table B.4: Target CV of varied input CV. Lognormal distributions are used as parameter distribution,
parameterized with the selected value as distribution mean, and the coefficient of variation as indicated
in the table columns.

most soil most water

influent. 1.0 2.0 3.0 influent. 1.0 2.0 3.0

TCDD P0 0.67 0.87 0.90 P0 0.43 0.67 0.79

PeCDD P0 0.19 0.23 0.24 KOW 0.22 0.38 0.46

HxCDD P0 0.10 0.13 0.14 KOW 0.20 0.42 0.59

HpCDD P0 0.02 0.03 0.04 KOW 0.14 0.36 0.56

OCDD P0 0.01 0.01 0.02 KOW 0.11 0.24 0.45

DEHP KOW 0.01 0.04 0.07 KOW 0.18 0.37 0.52

EDC SW 1.78 2.80 5.01 SW 0.57 1.12 1.30

benzene KOW 1.59 2.36 2.71 SW 0.13 0.31 0.42

LAS KOW 0.78 1.30 2.27 KOW 0.00 0.00 0.00

EDTA KOW 1.02 2.72 5.24 P0 0.00 0.00 0.00

HHCB KOW 0.85 1.28 1.45 SW 0.75 0.98 1.07

average 0.64 1.07 1.64 0.25 0.44 0.56

most sediment most air

influent. 1.0 2.0 3.0 influent. 1.0 2.0 3.0

TCDD P0 0.43 0.65 0.78 P0 0.04 0.08 0.10

PeCDD P0 0.13 0.24 0.32 P0 0.09 0.12 0.13

HxCDD P0 0.07 0.15 0.20 P0 0.07 0.09 0.10

HpCDD KOW 0.03 0.08 0.13 P0 0.01 0.02 0.03

OCDD KOW 0.03 0.08 0.14 P0 0.01 0.02 0.03

DEHP KOW 0.16 0.29 0.38 KOW 0.01 0.02 0.03

EDC SW 0.66 1.37 2.64 SW 0.01 0.02 0.02

benzene KOW 0.58 1.03 1.16 SW 0.02 0.02 0.02

LAS KOW 0.07 0.11 0.18 SW 4.98 8.95 9.88

EDTA KOW 0.00 0.00 0.00 SW 7.14 15.07 17.96

HHCB KOW 0.90 1.26 1.35 SW 0.27 0.38 0.42

average 0.28 0.48 0.66 1.15 2.25 2.61
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Table B.5: Summary of target CV of comparable scenarios. Input distributions were parameterized as
described in Section 4.2 (p. 52). There are no target CV for LAS, EDTA and HHCB because data was
too scarce for the parameterization approach. In case of the comparable scenarios, CV have an upper
bound of approximately 0.58.

most soil most water

influent. uni tri log influent. uni tri log

TCDD P0 1.59 0.32 0.24 P0 0.30 0.16 0.13

PeCDD P0 0.53 0.40 0.33 P0 0.14 0.09 0.07

HxCDD P0 0.11 0.01 0.01 P0 0.06 0.01 0.01

HpCDD P0 0.17 0.03 0.02 P0 0.06 0.02 0.01

OCDD P0 0.02 0.00 0.00 P0 0.02 0.01 0.01

DEHP P0 0.01 0.00 0.00 KOW 0.28 0.04 0.03

EDC KOW 0.20 0.20 0.20 SW 0.02 0.02 0.02

benzene KOW 0.27 0.28 0.28 SW 0.00 0.00 0.00

LAS P0 — — — P0 — — —

EDTA P0 — — — P0 — — —

HHCB P0 — — — P0 — — —

average 0.36 0.16 0.13 0.11 0.04 0.03

most sediment most air

influent. uni tri log influent. uni tri log

TCDD P0 0.27 0.16 0.13 P0 0.03 0.01 0.13

PeCDD P0 0.12 0.09 0.07 P0 0.11 0.09 0.07

HxCDD P0 0.06 0.01 0.01 P0 0.02 0.00 0.01

HpCDD P0 0.06 0.02 0.01 P0 0.03 0.01 0.01

OCDD P0 0.02 0.01 0.01 P0 0.02 0.00 0.01

DEHP KOW 0.05 0.01 0.01 P0 0.00 0.00 0.01

EDC KOW 0.07 0.07 0.07 SW 0.00 0.00 0.07

benzene KOW 0.15 0.15 0.15 SW 0.00 0.00 0.15

LAS P0 — — — P0 — — —

EDTA P0 — — — P0 — — —

HHCB P0 — — — P0 — — —

average 0.10 0.06 0.06 0.03 0.01 0.06
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Beiträge des Instituts für Umweltsystemforschung

der Universität Osnabrück
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