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Recently, the notion of a reinfection threshold in epidemiological models of only partial immunity has
been debated in the literature. We present a rigorous analysis of a model of reinfection which shows a
clear threshold behaviour at the parameter point where the reinfection threshold was originally described.
Furthermore, we demonstrate that this threshold is the mean field version of a transition in corresponding
spatial models of immunization. The reinfection threshold corresponds to the transition between annular
growth of an epidemics spreading into a susceptible area leaving recovered behind and compact growth of
a susceptible-infected-susceptible region growing into a susceptible area. This transition between annular
growth and compact growth was described in the physics literature long before the reinfection threshold
debate broke out in the theoretical biology literature.
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1. Introduction

In 1997, Grassberger, Chaté and Rousseau considered a model for the spreading of an agent in
a medium whose susceptibility changes irreversibly at the first infection which, in their words,
‘can model epidemics with partial immunization’, where after a first infection the recovered host
only have partial immunity against the pathogen or a genetically close mutant pathogen [18].
One driving question for looking at such models is the long going discussion in theoretical and
computational physics about critical phenomena in models with absorbing states, especially with
so-called frozen absorbing states.
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While the susceptible-infected-susceptible epidemics (SIS) has one unique absorbing state,
hence clearly falls into the universality class of directed percolation (DP) with respect to its critical
transition behaviour [17], the susceptible-infected-recovered epidemics (SIR) shows many frozen
absorbing states of various configurations of recovered and susceptibles once the infection has died
out, the universality class of the phase transition being ordinary percolation [16], or as nowadays
also called dynamic percolation (DyP) when it comes to more than the static aspects. The spatial
stochastic model of spreading in media with long-time memory [18] has the SIS and the SIR
epidemics as special cases and interpolates between them. Below we will give a time continuous
version of such a spatial SIRI epidemics, which shows, according to general knowledge of critical
phenomena, the same universality as the originally considered time discrete model considered by
Grassberger et al. [18].

Since partial immunity is a frequent feature of many pathogens, such as Neisseria meningitidis,
Streptococcus pneumoniae, Mycobacterium tuberculosis, and especially those pathogens with
pronounced multi-strain structure, in 2004, Gomes et al. [14] discussed various models of waning
immunity as well as partial immunity and found in their ordinary differential equations (ODE) what
they coined ‘a reinfection threshold’. In order to obtain non-trivial stationary solutions, where not
all the population become recovered, they had to consider, in addition to the SIRI-model of spread-
ing, also terms describing input into the susceptible class from other classes. They use natural
birth and death for the hosts of the epidemics. In their stationary states analysis, they found a first
threshold between a disease-free state and a non-trivial state with strictly positive endemic equilib-
rium. Besides this first threshold, they found a second threshold characterized by the ratio between
the infection and reinfection rates. This second threshold they call the ‘reinfection threshold’.

However, this notion of the reinfection threshold was questioned recently by Breban and
Blower [4] in 2005, where they simply claim that ‘The reinfection threshold does not exist’. They
do so on the basis that there would be nothing special going on in the stationary state solution at
the point where the reinfection threshold was marked. An immediate reply by Gomes et al. [15]
on the importance of the reinfection threshold emphasizes the epidemiological implications of
vaccine efforts being successful below the threshold but not above. Beyond the reinfection thresh-
old, the stationary solution is ruled by the secondary infections in the IRI sub-compartment of the
SIRI model which cannot be further affected by vaccination. Vaccination only brings susceptibles
directly into the recovered class by circumventing the infection class.

In the light of discussion in the above-mentioned physics literature, we construct a stochastic
spatial epidemiological model for the SIRI-system, which has the same critical behaviour as the
model considered by Grassberger et al. [18]. Especially, it shows transitions between phases
of no growth below the DP or DyP critical points which are joined by a phase transition line,
and another transition between annular growth and compact growth in two and higher spatial
dimensions. We calculate the mean field approximation of this stochastic spatial epidemiological
SIRI-model for the dynamics of the mean total numbers of susceptibles, infected and recovered.
This mean field dynamics is the core of the ODE-models considered by Gomes et al. [14] for
the reinfection mechanism. Instead of including the interactions of hosts birth and death, we just
add to the spreading SIRI-model one more transition, namely from recovered to susceptibles with
rate α, that ensures the existence of a non-trivial stationary solution and consider the limit of
vanishing α. In that limit, we obtain a sharp threshold behaviour characterized by the parameter
values of the reinfection threshold of Gomes et al. [14]. The threshold behaviour is in analogy
to the Ising spin threshold, for example, in the limit of vanishing external magnetic field [2,19].
So we conclude that the reinfection threshold does exist in the sense that any other threshold in
physical phase transitions exists or any bifurcation behaviour in mean field models exist. From
the studies of spatial stochastic epidemics with partial immunization in two dimensions [18], we
even know that the mean field threshold behaviour provides also a description of the threshold
behaviour of spatial models, namely the transition between annular growth and compact growth.
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Finally, we calculate the phase diagram for this mean field solution in the original parameters
of first and secondary infection rates. The mean field phase diagram is in good agreement with
phase diagrams of higher dimensional simulations of the stochastic partial immunization model
as investigated by Dammer and Hinrichsen [6], in 2004. Hence, we find solid evidence that the
reinfection threshold exists and is the mean field analogue of a well-studied phase transition line
in spatial stochastic immunization models.

2. A model with partial immunization: SIRI

In the model with partial immunization, the SIRI-model, we have as transition rates the infection
β as a transition from susceptible S to infected I , the recovery rate γ from I into the recovered
R class, and as a special ingredient a rate of reinfection β̃ as effect of only partial immunization
of the recovered. The reaction schemes for transitions of the SIRI system is given by

S + I
β−→ I + I

I
γ−→ R

R + I
β̃−→ I + I.

(1)

Let p(S1, I1, R1, S2, I2, R2, . . . , RN, t) be the probability of the state S1, I1, R1, S2, I2, R2, . . . ,

RN occur at time t . Let Ji,j ∈ {0, 1} be the elements of the N × N adjacency matrix J , symmetric
and with zero diagonal elements, describing the neighbouring structure of the individuals: if
Ji,j = 1 then the individual i is a neighbour of j, and if Ji,j = 0 then the individual i is not a
neighbour of j .

For the SIRI model, we have in the spatial set-up for the variables Si , Ii and Ri ∈ {0, 1} the
constraint that an individual i belongs to one of the three classes

Si + Ii + Ri = 1. (2)

The master equation for the probability p(S1, I1, R1, S2, I2, R2, . . . , RN, t) of the spatial SIRI-
system is for N individuals

d

dt
p(S1, I1, R1, S2, I2, R2, . . . , RN, t)

=
N∑

i=1

β

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ (1 − Si)p(S1, I1, R1, . . . , 1 − Si, 1 − Ii, Ri . . . , RN, t)

+
N∑

i=1

γ (1 − Ii)p(S1, I1, R1, . . . , Si, 1 − Ii, 1 − Ri . . . , RN, t)

+
N∑

i=1

β̃

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ (1 − Ri)p(S1, I1, R1, . . . , Si, 1 − Ii, 1 − Ri . . . , RN, t)

−
N∑

i=1

⎡
⎣β

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ Si + γ Ii + β̃

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ Ri

⎤
⎦ p(. . . Si, Ii, Ri . . .). (3)

A first simulation of the model can be seen in Figure 1(a) and (b). For the simulation of the
master equation, the so-called Gillespie algorithm was used, giving exponential waiting times
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Figure 1. (Available in colour online) (a) Simulation of a two-dimensional SIRI spreading experiment. Green S, and
initially one infected I (red) at the centre of the lattice spreads the infection, leaving mostly recovered R (blue) behind.
Parameters of the simulation are β = 2, γ = 1 and β̃ = 0.1. Lattice size is 100 × 100. The annular growth of the infected
is clearly visible for this parameter set. (b) Same as in Figure 1(a) but with a moderately higher β̃ = 0.5. For this parameter
set, the more compact like behaviour as opposed to the annular growth in Figure 1(a) is visible.

between transitions [10,11]. Hence, time is a real variable here, as opposed to discrete time
processes considered previously [6,18].

To obtain expectation values, e.g. for the total number of infected hosts at a given time

〈I 〉(t) :=
1∑

S1=0

1∑
I1=0

1∑
R1=0

1∑
S2=0

· · ·
1∑

RN =0

(
N∑

i=1

Ii

)
· p(S1, I1, R1, S2, . . . , RN, t) (4)

we can calculate the dynamics of such moments by taking its time derivative

d

dt
〈I 〉(t) =

1∑
S1=0

1∑
I1=0

1∑
R1=0

1∑
S2=0

· · ·
1∑

RN =0

(
N∑

i=1

Ii

)
· d

dt
p(S1, I1, R1, S2, . . . , RN, t). (5)

Now we have to insert the master equation (3) into Equation (5) for the expression
d/dtp(S1, I1, R1, S2, . . . , RN, t) and after some calculation (for explicit calculations for the
simpler SIS system see, e.g. [25]), we find in terms of all variables S, I and R

d

dt
〈S〉 = −β〈SI 〉1

d

dt
〈I 〉 = β〈SI 〉1 − γ 〈I 〉 + β̃〈RI 〉1

d

dt
〈R〉 = γ 〈I 〉 − β̃〈RI 〉1

(6)

where, e.g.

〈RI 〉1(t) :=
1∑

S1=0

1∑
I1=0

· · ·
1∑

RN =0

⎛
⎝ N∑

i=1

N∑
j=1

(J 1)ijRiIj

⎞
⎠ · p(S1, I1, R1, . . . , RN, t)

is the mean number of pairs of recovered next to infected. In the equation for the dynamics of
〈RI 〉1 also an expression 〈RI 〉2 could show up. These are longer range correlations, formally
given by a power of two of the adjacency matrix J 2 and then its elements (J 2)ij = ∑N

k=1 Jik · Jkj .
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Let
N∑

j=1

Jij =: Qi (7)

be the number of neighbours of lattice site i. From now on we will only consider regular lattices
where all sites has the same number of neighbours, hence Qi = Q for all i. The constant Q is
often also called the coordination number.

In mean field approximation, we obtain

〈RI 〉1(t) ≈ Q

N
〈R〉 · 〈I 〉 (8)

etc. such that the equation system Equation (6) gives a closed ODE system. Approximating the
pairs in Equation (6), we obtain the following mean field equations for the SIRI model:

d

dt
〈S〉 = −β

Q

N
〈S〉〈I 〉

d

dt
〈I 〉 = β

Q

N
〈S〉〈I 〉 − γ 〈I 〉 + β̃

Q

N
〈R〉〈I 〉

d

dt
〈R〉 = γ 〈I 〉 − β̃

Q

N
〈R〉〈I 〉.

(9)

In the ODE system Equation (9), one can study stationary solutions when including birth into
the susceptible class and death from all classes. In the stochastic system even then the formal
stationary solution only gives disease-free solutions as an absorbing state, since there is always a
small probability of extinction in the I class. Hence, spreading experiments or steady import of
infected from outside (and then considering the system in the limit of vanishing external import)
can help to some extent [20]. See also [8] for another approach facing the problem of an absorbing
boundary to obtain a quasi-stationary solution.

In the general system without the approximation of mean field behaviour Equation (6), one has
to find a dynamic for the pairs 〈SI 〉1 and 〈RI 〉1, which will include triples 〈SIS〉11 etc. for which
in turn dynamics have to be found, including then even higher moments. Pair approximation is the
next step after mean field to close the system. In the pair approximation, triples are approximated
by an expression which only has means and pairs (for a detailed analysis of the present system
in pair approximation see [21,27]). Beyond pair approximations, there are series expansions
promising to gain further insights into the present models [22,24].

Taking the constraint Si + Ii + Ri = 1 for local quantities into account (not to be confused
with the relation for global quantities

∑N
i=1 Si + Ii + Ri = N giving the total number of host

individuals) and thus replacing the set of variables S, I, R by the independent variables, e.g. I, R,
hence Si = 1 − Ii − Ri , we obtain for the pairs expectation value 〈SI 〉1

〈SI 〉1 =
〈

N∑
i=1

N∑
j=1

JijSiIj

〉
=

〈
N∑

i=1

N∑
j=1

Jij (1 − Ii − Ri)Ij

〉

=
〈

N∑
j=1

Ij

N∑
j=1

Jij

〉
− 〈II 〉1 − 〈RI 〉1.

And for regular lattices, hence
∑N

j=1 Jij = Q, we obtain

〈SI 〉1 = Q〈I 〉 − 〈II 〉1 − 〈RI 〉1. (10)
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Inserting Equation (10) into the dynamics for the mean values Equation (6), we obtain

d

dt
〈I 〉 = (βQ − γ )〈I 〉 − β〈II 〉1 + (β̃ − β)〈RI 〉1

d

dt
〈R〉 = γ 〈I 〉 − β̃〈RI 〉1

(11)

and as a first result we recover for β̃ = β, i.e. the reinfection being equal to the initial infection,
the solution which one obtains in the SIS-system

d

dt
〈I 〉 = (βQ − γ )〈I 〉 − β〈II 〉1. (12)

The other limit of the SIRI-model (the SIR limit β̃ = 0) can, of course, be obtained directly from
Equation (6) by inserting β̃ = 0.

3. Local quantities

Considering local quantities like 〈Ii〉(t), which in a continuous space model corresponds to the
local density ψ(x, t) with spatial variable x corresponding to i and lattice spacing a from our
lattice model going to zero, we obtain

d

dt
〈Ii〉 = β

N∑
j=1

Jij 〈SiIj 〉 − γ 〈Ii〉 + β̃

N∑
j=1

Jij 〈RiIj 〉. (13)

Since Si + Ii + Ri = 1, in the independent variables Ii and Ri we obtain

d

dt
〈Ii〉 = β∇2〈Ii〉 + (βQ − γ )〈Ii〉 − β

N∑
j=1

Jij 〈IiIj 〉 + (β̃ − β)

N∑
j=1

Jij 〈RiIj 〉 (14)

where we use the discrete version of the diffusion operator

∇2〈Ii〉 =
N∑

j=1

Jij (〈Ij 〉 − 〈Ii〉). (15)

The discretized diffusion operator [5] for any local function fi is defined as

∇2fi :=
N∑

j=1

Jij (fj − fi) (16)

which in one dimension, e.g. simply gives the well-known expression

∇2fi = Ji,i−1(fi−1 − fi) + Ji,i+1(fi+1 − fi)

= fi+1 − 2 · fi + fi−1 (17)

for the second derivative. Thus, the dynamics for both mean values is given by

d

dt
〈Ii〉 = β∇2〈Ii〉 + (βQ − γ )〈Ii〉 − β

N∑
j=1

Jij 〈IiIj 〉 + (β̃ − β)

N∑
j=1

Jij 〈RiIj 〉

d

dt
〈Ri〉 = γ 〈Ii〉 − β̃

N∑
j=1

Jij 〈RiIj 〉.
(18)
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Further equations for d/dt〈IiIj 〉 and d/dt〈RiIj 〉 have to be calculated explicitly from the master
equation.

In Equation (18) the drift and diffusion terms, well known from partial differential equations
(PDEs), are recovered as well as the expected reaction terms. Of course, creation from one particle
at one site to a neighbouring site and subsequent annihilation on the original site can be interpreted
as diffusion (remark in [17]).

Ignoring local correlations, or equivalently looking at a coarse grained version of Equation (18),
we can, e.g. approximate

〈RiIj 〉 ≈ 〈Ri〉 · 〈Ii〉 (19)

then leaving the summation over the adjacency matrix elements
∑N

j=1 Jij = Q gives a closed
equation system for the local dynamics

d

dt
〈Ii〉 = β∇2〈Ii〉 + (βQ − γ )〈Ii〉 − βQ〈Ii〉〈Ii〉 + (β̃ − β)Q〈Ri〉〈Ii〉

d

dt
〈Ri〉 = γ 〈Ii〉 − β̃Q〈Ri〉〈Ii〉.

(20)

This system can be interpreted as a discretized version of a PDE system

∂

∂t
ψ(x, t) = β∇2ψ + (βQ − γ )ψ − βQψ2 + (β̃ − β)φψ

∂

∂t
φ(x, t) = γψ − β̃Qφψ.

(21)

and simulated as such, see Figure 2(a) and (b) in good comparison with Figure 1(a) and (b).

Remember that we are analysing diffusive spreading, hence relations like Ii + Sj

β−→ Ii + Ij

and Ii + Rj

β̃−→ Ii + Ij for neighbouring lattice sites i and j and single site transitions like

Ii

γ−→ Si , etc. so that the lattice neighbourhood describes contacts between host individuals and
not physical movement of such individuals on an otherwise empty lattice. Hence only the infectives
spread due to infecting other lattice sites and only this gives a diffusion term in the PDE for the
infected, whereas none appears for the recovered class or the susceptibles.

Figure 2. (Available in colour online) (a) Simulation of the PDE system with parameters as previously used in Figure 1(a)
for the stochastic system, i.e. β = 2, γ = 1 and β̃ = 0.1. The colour code is comparable as in Figure 1, but now ratios
between the classes are possible, so that, e.g. a proportion of recovered (blue) in an area mainly occupied by infected
(red) results in a violet colour. The annular growth again is well visible. (b) Simulation of the PDE system, this time with
parameters as previously used in Figure 1(b) for the stochastic system, hence β̃ = 0.1. Now the compact like growth is
observed.
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The mean field type approximation Equation (19) is a good approximation whenever the covari-
ance is smaller than the product of means (〈RiIj 〉 − 〈Ri〉 · 〈Ii〉) < 〈Ri〉 · 〈Ii〉, a version of the
Ginzburg criterium for the region of validity of the mean field approximation. Outside the critical
region of the phase transitions or above the upper critical dimension (for DP that is dimension 4,
for DyP it is 6) the mean field approximation is appropriate. Since we are interested in the quali-
tative picture of the phase diagram (rather than the critical behaviour at the phase boundaries, as
also show our simulation parameters), the mean field approximation is sufficient here.

In the spatial system, we have, in two and higher dimensions, annular growth near the SIR-
limit of the SIRI-system and compact growth for supercritical values around the SIS-limit [18].
Grassberger et al. [18] considered a two-dimensional spatial system (and briefly mention the
degenerate one-dimensional case), whereas Dammer and Hinrichsen [6] in 2004 investigate the
partial immunization system for three to six spatial dimensions, including the phase diagrams.

We have also recently studied the phase transition lines for the spatially stochastic SIRI model
in continuous time (see forthcoming article [18]), and obtain qualitatively similar results as found
in the time discrete version by Grassberger et al. [18].

4. Mean field model: SIRI with reintroduced susceptibles

To obtain any useful insight into the mean field stationary state behaviour of the SIRI model,
we investigate the model with the additional reintroduction of susceptibles. This can be done in
various ways, e.g. with death from all classes S, I and R and reintroduction to the S class, i.e.
birth into susceptibility [14] or by just taking the original SIR transition α from recovered to
susceptibles.

So we consider the following reaction scheme:

S + I
β−→ I + I

I
γ−→ R

R + I
β̃−→ I + I

R
α−→ S

(22)

with the additional transition from R to S with rate α.
The reaction scheme results in the master equation of the following form:

d

dt
p(S1, I1, R1, S2, I2, R2, . . . , RN, t)

=
N∑

i=1

β

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ (1 − Si)p(S1, I1, R1, . . . , 1 − Si, 1 − Ii, Ri . . . , RN, t)

+
N∑

i=1

γ (1 − Ii)p(S1, I1, R1, . . . , Si, 1 − Ii, 1 − Ri . . . , RN, t)

+
N∑

i=1

β̃

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ (1 − Ri)p(S1, I1, R1, . . . , Si, 1 − Ii, 1 − Ri . . . , RN, t)
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+
N∑

i=1

α(1 − Ri)p(S1, I1, R1, . . . , 1 − Si, Ii, 1 − Ri . . . , RN, t)

−
N∑

i=1

⎡
⎣β

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ Si + γ Ii + β̃

⎛
⎝ N∑

j=1

Jij Ij

⎞
⎠ Ri + αRi

⎤
⎦ · p(. . . Si, Ii, Ri . . .). (23)

For the mean total number of susceptible, infected and recovered hosts, we obtain (for explicit
calculations, see [21])

d

dt
〈S〉 = α〈R〉 − β〈SI 〉1

d

dt
〈I 〉 = β〈SI 〉1 − γ 〈I 〉 + β̃〈RI 〉1

d

dt
〈R〉 = γ 〈I 〉 − α〈R〉 − β̃〈RI 〉1

(24)

again involving pairs of infected and susceptibles or pairs of infected and recovered. Either
additional dynamic equations for these pairs have to be derived from the master-equation or being
approximated with the mean field assumption.

The mean field approximation is

d

dt
〈S〉 = α〈R〉 − β

Q

N
〈S〉〈I 〉

d

dt
〈I 〉 = β

Q

N
〈S〉〈I 〉 − γ 〈I 〉 + β̃

Q

N
〈R〉〈I 〉

d

dt
〈R〉 = γ 〈I 〉 − α〈R〉 − β̃

Q

N
〈R〉〈I 〉.

(25)

This ODE system can be studied in the scaled quantities, time changed to τ := t/γ and
consequently

ρ := βQ/γ, ε := α/γ (26)

and the ratio of infectivities given by

σ := β̃/β. (27)

Further, we consider densities of susceptibles, infected, and recovered, hence s := 〈S〉/N , i :=
〈I 〉/N . Then with 〈R〉/N = 1 − s − i, we obtain the two-dimensional ODE system

d

dτ
s = ε(1 − s − i) − ρsi

d

dτ
i = ρi(s + σ(1 − s − i)) − i

(28)

to compare with the formulation in [14]. The stationary solution is either i∗1 := 0 or

i∗2 := − r

2
+

√
r2

4
− q (29)

with

r := 1

ρσ
(1 − ρσ + ε) and q := ε

ρ2σ
(1 − ρ) (30)
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In original coordinates this gives 〈I 〉∗1 = 0 and (〈I 〉∗2/N)2 + r · (〈I 〉∗2/N) + q = 0 with

r =
(

γ + α

β̃Q
− 1

)
and q = α

β̃Q

(
γ

βQ
− 1

)
. (31)

At ρ = 1, which is the classical epidemiological threshold quantity and also known as the basic
reproduction number R0 [3], the solutions i∗1 and i∗2 meet each other, i.e. i∗2 = 0, coinciding with
q = 0.And at ε = 0, we obtain another change of regime with r = 0, which is slightly more subtle
in the first inspection. This change of regime is the reinfection threshold. The whole concept of
this second threshold behaviour was questioned in [4] as a comment to [14]. They in turn justified
the concept of the reinfection threshold by looking at the behaviour of the basic mean field model
under vaccination, showing that the first threshold can be shifted towards larger ρ values by the
introduction of vaccination, but cannot be shifted beyond the second threshold by any means of
vaccination [15]. Here we demonstrate that in the SIRI model with reintroduced susceptibles (in
our version of the transition from recovered to susceptibles with rate α), the reinfection threshold
appears in the limit of α decreasing to zero as a sharp threshold.

The threshold behaviour is in analogy to the Ising spin threshold for example in the limit of
vanishing external magnetic field. So we conclude that the reinfection threshold does exist in the
sense that any other threshold in physical phase transitions exists or any bifurcation behaviour in
mean field models exist. From the studies of spatial stochastic epidemics with partial immunization
[6,18], we even know that the mean field threshold behaviour is qualitatively describing also the
threshold behaviour of spatial models, namely the transition between annular growth and compact
growth.

In the following, we just analyse the mean field behaviour of the SIRI-model with α-interaction
and investigate the limiting behaviour of vanishing α, finding a sharp transition at 1/σ , the
reinfection threshold.

In Figure 3(b) the solution i∗2 = −r/2 + √
(r2/4) − q, full line, is plotted against the curves

−r and its modulus |r|. For non-zero values of ε, the solution i∗2 changes from negative to positive
at ρ = 1, while in the limit of ε tends to zero the curves for −r and |r| change at ρ = 1/σ .
Therefore, in this limiting case, the solution i∗2 given by

i∗2 = −r + |r|
2

also changes from negative to positive. This qualitative change at ρ = 1/σ is the reinfection
threshold as predicted by Gomes et al. [14].

When plotting the stationary state solution as function of both independent parameters ρ and ε

(Figure 4), the threshold behaviour for vanishing ε = 0 is clearly visible, whereas for finite ε the
curves for I ∗(ρ) are smoothened out around the reinfection threshold.

This behaviour is qualitatively very similar to what happens in magnetic models. The Figure 4,
which we have just discussed, can be well compared with the mean field solution of the Ising model,
where the magnetization m(V, h), as function of the coupling strength V between spins (analogue
to infectivity β in epidemiology) and external magnetic field h (analogue to waning immunity α),
shows a similar threshold behaviour for positive but vanishing external magnetic field h → 0 as
shown in Figure 5 (see, e.g. [2] or [26] for a detailed description). Hence, the bifurcation point for
vanishing waning immunity α or vanishing external magnetic field h extends qualitatively into the
region for small parameter values of these quantities and remains as a qualitative jump in dynamic
behaviour. In nature you never find any magnetic system with exactly zero external magnetic field,
but of course the phase transition can be studied experimentally because of the extension into the
small h region. In the epidemiological system we have, in addition, another threshold between
extinction of disease and persistence which is a bifurcation point for non-vanishing α. Hence from
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Figure 3. (a) The conventional picture of the reinfection threshold, in semi-logarithmic plot [14]. We just use the
parameter α instead of the death out of all classes and birth into susceptibles. The value for σ = 1/4 will also be
used in Figure 3(b), and ε = 0.00001 to demonstrate a clear threshold behaviour around ρ = 1/σ . (b) The solution
i∗2 = −r/2 + √

(r2/4) − q, full line is plotted against the curves −r and its modulus |r|. While i∗2 changes from negative
to positive at ρ = 1, the curves for −r and |r| change at ρ = 1/σ for vanishing or small ε. This qualitative change at
ρ = 1/σ is the reinfection threshold. Parameters are σ = 1/4 = 0.25 and ε = 0.01.
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Figure 4. (a) The stationary value of the number of infected individuals with both parameters ρ and ε shows for high
values of ε, here up to ε = 0.2, just a threshold behaviour at ρ = 1 and for vanishing ε the threshold at ρ = 1/σ = 4
(better seen in (b)), since σ was fixed to be σ := 1/4. The continuous change from behaviour dominated by the first
threshold ρ = 1 for ε = 0.2 to the behaviour around the second threshold ρ = 1/σ for ε = 0 can be seen here. (b) The
enlargement of the graphic in (a) for small values of ε, here increasing only up to ε = 0.02.

an operational point, we have clearly two thresholds in the reinfection model for small waning
immunity, as observed in Figure 4.

It is interesting to see that for large values of, e.g. ε = 0.2, the behaviour of I ∗ is completely
dominated by the simple threshold behaviour around ρ = 1, the reinfection threshold not visible
even qualitatively (Figure 4(a)). In contrast, for vanishing ε = 0, there is only the qualitative
behaviour left from the behaviour around the second threshold ρ = 1/σ . The change between
these two extremes is quite continuous, as can be seen in Figure 4(a). However, close to the
reinfection threshold ρ = 1/σ , the solutions for I ∗ for small ε are a smoothened out version of
that threshold, as better seen in Figure 4(b).

Finally, we look at the phase diagram in the original coordinates, β and β̃, as opposed to the
scaled variables ρ and ε, remembering the definitions for these, Equation (26). The phase diagram
for the mean field model for the two-dimensional case, Q = 4 neighbours is shown in Figure 6.
This phase diagram can be compared with the phase diagrams of the epidemic process with partial
immunization on a d-dimensional cubic lattice investigated by Dammer and Hinrichsen [6], where
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Figure 5. The state equation in its natural variables m(V, H) as function of V and h as the independent variables. The
magnetization m is obtained via Newton’s method from artanh(m) − 2 · QV m − h =: f (m) = 0. The critical threshold
for vanishing external magnetic field is clearly visible, whereas positive external field results in a smoothing of the curves
around the threshold.
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Figure 6. Mean field phase diagram for the SIRI model with reintroduced susceptibles. It comprises three different
phases, the no-growth, annular growth and compact growth, and is in good agreement with the phase diagrams presented
in [6], obtained with higher dimensional spatial stochastic simulations. For consistency with the previously investigated
two-dimensional case, we set Q = 4 neighbours.

the mean field behaviour is approached by spatial stochastic simulations for d = 3, 4, 5, 6. The
threshold at ρ = 1 gives the critical value for β with β = γ /Q, the vertical line corresponding to
the transition between no-growth and annular growth. The threshold for ρ = 1/σ gives the critical
value for β̃ with β̃ = γ /Q, the horizontal line corresponding to the transition between annular
growth and compact growth. In the limit of vanishing ε, this line defines the reinfection threshold.

5. Generic appearance of the concept of reinfection threshold

The concept of the reinfection threshold turns out to be quite generically appearing in various
models of multi-strain dynamic epidemiological models (generical in the sense of wider
appearance than just appearing in the above-mentioned model).
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Here we look at a simplified version of existing influenza models, namely where reinfection
of the R class can happen, but mostly only leads to a boost in immunity without creating enough
pathogens to be infectious, a class we label with Ĩ , with transition rate (1 − σ)β, whereas only
in few cases a new infected I is caused, with rate σβ. On first inspection it is not obvious that
the reinfection threshold also appear in this more complicated model. But the analysis shows that
the reinfection threshold is not only present in this model, but does not even change the position
where it appears.

The reaction scheme for the simplified influenza model is

S + I
β−→ I + I

I
γ−→ R

R + I
(1−σ)β−→ Ĩ + I

σβ−→ I + I

Ĩ
γ−→ R

R
α−→ S

(32)

with the reaction between R and I has two reaction channels, the one to Ĩ + I and the other to
2I . The mean field equations hence is

d

dt
〈S〉 = α〈R〉 − β

Q

N
〈S〉〈I 〉

d

dt
〈I 〉 = β

Q

N
〈S〉〈I 〉 − γ 〈I 〉 + σβ

Q

N
〈R〉〈I 〉

d

dt
〈R〉 = γ 〈I 〉 − α〈R〉 − σβ

Q

N
〈R〉〈I 〉 − ωβ

Q

N
〈R〉〈I 〉 + ψ〈Ĩ 〉

d

dt
〈Ĩ 〉 = ωβ

Q

N
〈S〉〈I 〉 − ψ〈Ĩ 〉

(33)

where, for reasons of easier analysis, we have replaced (1 − σ) by ω and the recovery rate γ from
the sub-infective infected Ĩ by ψ .

Again we find solutions 〈I 〉∗1 = 0 and a quadratic equation (〈I 〉∗2/N)2 + r · (〈I 〉∗2/N) + q = 0
with in this case

r =
⎛
⎝ γ + α

βQ
(
σ + ω

γ

ψ

) − σ

σ + ω
γ

ψ

⎞
⎠ (34)

and

q = α

σβQ

(
σ

σ + ω
γ

ψ

)
·
(

γ

βQ
− 1

)
(35)

which comes back to Equation (31) when setting the transition ω to zero, as expected.
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But also when setting ω := (1 − σ) and ψ := γ , as given in the reaction scheme, we obtain

σ + ω
γ

ψ
= 1 (36)

and hence very similarly to Equation (31)

r =
(

γ + α

βQ
− σ

)
, q = α

βQ

(
γ

βQ
− 1

)
(37)

with surprisingly the thresholds at the same positions as in the original model, namely from
q = 0 at ((βQ)/γ ) = 1 and for vanishing α = 0 from r = 0 the reinfection threshold at
((βQ)/γ ) = 1/σ .

Partial immunization is implemented in this and previous papers [14,15] as a reduction in
the susceptibility to reinfection applying to individuals who have been previously infected (or
vaccinated). However, we could think of partial immunization acting in slightly different ways.
As we will see, the reinfection threshold is robust to some changes in model structure but not to
all, emphasizing the importance of awareness of the associated effects before settling on a specific
model for a given disease. Suppose that rather than preventing infection, partial immunization
modulates the infectious load of affected individuals making them less infectious to others. This
mechanism is implemented by the following model structure:

S + I
β−→ I + I

I
γ−→ R

R + I
β−→ Ĩ + I

S + Ĩ
σβ−→ I + Ĩ

R + Ĩ
σβ−→ Ĩ + Ĩ

Ĩ
γ−→ R

R
α−→ S.

(38)

This model also exhibits a reinfection threshold and associated effects when ρ = 1/σ . The
formulations of reduced susceptibility and reduced infectivity have been used interchangeably
in more elaborate models describing the transmission dynamics of multi-strain pathogens and
demonstrated to lead to similar behaviour [9].

If, however, we assume that the effect of immunization is to provide an all-or-nothing protection
(i.e. randomly protects a fraction (1 − σ) of exposed individuals, while the remaining σ have no
protection at all) then no reinfection threshold is observed. The basic model structure is

S + I
β−→ I + I

I
(1−σ)γ−→ R

σγ−→ S

R
α−→ S.

(39)

This mechanism has also been extended to model multi-strain pathogens showing significant
differences in behaviour when compared with the previous two alternatives [7].
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Besides the alternative formulations of partial immunization and the extension to multi-strain
pathogens, these models have been combined with processes that are specific to different diseases
leading to a variety of effects. In tuberculosis, the inclusion of a latency class does not significantly
alter the results present here. This is, perhaps, the prime application of the results concerning
variable efficacy of vaccination programmes [13]. In pertussis, besides reducing susceptibility to
(re)infection, partial immunization has the additional effect of reducing disease symptoms. In this
case, we observe that maximum levels of severe disease incidence are expected at intermediate
levels of transmission [1]. This is because high transmission settings sustain higher levels of
immunity through repeated boosting, which ultimately leads to lower levels of severe disease. In
influenza, we investigate the possible effects of reinfection thresholds in the processes of drift and
shift evolution [12] and investigate the robustness of the results to varying the contact structure
between hosts [23].

6. Summary

We have considered a spatial stochastic epidemiological model with partial immunization. For
the classical SIRI model, where the individuals can be susceptibles, infecteds, recovered and
again infected, we include one more transition from recovered to susceptibles. We present a
rigorous analysis for this SIRI model in the mean field approximation and observe two different
threshold regions. In the limiting case when no transitions from recovered to susceptibles occur,
the second region becomes a sharp threshold, as predicted by Gomes et al. [14]. We further
support the existence of the reinfection threshold showing the appearance of this phenomena
in different epidemiological models with partial immunization. We expect that the reinfection
threshold plays a fundamental role in the epidemiology of many infectious diseases and should
be further explored both theoretically and in practical applications. In essence, it is a powerful
source of variability explaining discrepancies between data collected in populations with different
transmission intensities. Moreover, it brings out the need to carefully consider the characteristics
of specific population when designing control programmes.
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