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Abstract Invasive species cause enormous problems in ecosystems around the world.
Motivated by introduced feral cats that prey on bird populations and threaten to drive
them extinct on remote oceanic islands, we formulate and analyze optimal control
problems. Their novelty is that they involve both scalar and time-dependent controls.
They represent different forms of control, namely the initial release of infected preda-
tors on the one hand and culling as well as trapping, infecting, and returning predators
on the other hand. Combinations of different control methods have been proposed to
complement their respective strengths in reducing predator numbers and thus protect-
ing endangered prey. Here, we formulate and analyze an eco-epidemiological model,
provide analytical results on the optimal control problem, and use a forward–backward
sweep method for numerical simulations. By taking into account different ecological
scenarios, initial conditions, and control durations, our model allows to gain insight
how the different methods interact and in which cases they could be effective.
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1 Introduction

In USA, cats are the most popular companion animal with more than 80 million
individuals living in peoples’ homes. The number of feral cats is unknown but esti-
mated to range from 60 to 80million (Loyd and Miller 2010). The feral domestic cat
(Felis catus) is an opportunistic predator, eating what is most easily available, switch-
ing prey according to their relative spatial and temporal availability (Fitzgerald and
Turner 2000). Among the most notorious and harmful introduced predators are feral
cats. Cats have often been introduced on islands in attempts to control rats, which get
to the shore from hitching a ride from sealing or whaling boats or from shipwrecks
(Moors and Atkinson 1984). Feral cats are predatory invasive species with negative
effect on wildlife and pose significant threat to tree- and ground-nesting birds, her-
petofauna, and small mammals they prey upon (Loyd and Miller 2010). The native
prey attacked by invasive cats often lack evolved anti-predation mechanisms, e.g.,
seabirds, which have to return to land to raise their young, after nesting on islands
(Moors and Atkinson 1984; Diamond 1989). On remote oceanic islands, introduced
feral cats pose particularly devastating threats on the native fauna. For example, five
cats introduced on Marion island in 1949 resulted in a population of more than 2000
cats some 25years later, depleting some 500,000 common diving petrels and severely
affecting hole-nesting petrels (van Aarde 1980; van Rensburg and Bester 1988). At
this same time, five cats introduced on the Kerguelen islands grew to several tens
of thousands and are estimated to kill more than three million seabirds every year
(Chaphuis 1995).

In an attempt to conserve the population of native birds, the eradication of invasive
cat populations on islands has been the goal of many control programs (Courchamp
et al. 2003; Robertson 2008; Lavers et al. 2010).While there are a number of successful
eradications, the majority of them took place on small islands (Nogales et al. 2004).
Eradication remains notoriously difficult, time-consuming, and costly—especially on
remote and larger islands. Actually, eradication is not always the goal of management
programs, because cats have become part of the ecosystem and their extirpation may
lead to undesirable consequences such as the mesopredator release effect (Courchamp
et al. 1999; Rayner et al. 2007; Russell et al. 2009).

In this paper, we use optimal control theory to find optimal control programs that
(1) maximize the bird population size, while minimizing (2) the cat population size
and (3) the intervention costs. To our knowledge, this is a novel application of optimal
control theory in endangered species protection.

The most common methods of controlling feral cats on islands are trapping and
hunting, i.e., “mechanical” forms of control, followed by poisoning (see Nogales et al.
2004). There are also two cases of releasing viral diseases as biocontrol agents that
led to successful cat eradications on sub-Antarctic Marion Island (Bester et al. 2002)
and central-Pacific Jarvis Island (Rauzon 1985). The combination of different control
methods has been identified as an “important management consideration” (Dobson
1988, p. 35) and suggested as the best way to deal with mammalian introductions
(Courchamp et al. 2003). In practice, however, different forms of control often occur
in separate, consecutive phases (e.g., Bester et al. 2002). In the theoretical litera-
ture, the joint interplay of combined control methods has been rarely investigated.
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However, using a mathematical model of ordinary differential equations, Courchamp
and Sugihara (1999, p. 121) suggest that culling is “more efficient when held during
simultaneous virus introduction.”

Here, we consider the combined use of different intervention methods, namely
mechanical control (culling) and biological control (infectious diseases). Culling can
be in the form of trapping or hunting and is modeled by an additional time-dependent
mortality rate of the cat population. For the biological control, we consider the feline
immunodeficiency virus (FIV), which has been suggested and studied for controlling
cats on oceanic islands (Courchamp and Sugihara 1999; Courchamp et al. 1998, 2000;
Oliveira and Hilker 2010). FIV is a retrovirus inducing acquired immunodeficiency
syndrome (AIDS) in cats. Its advantages as a potential biological control agent are
its high host specificity and low prevalence (Courchamp and Pontier 1994; Hartmann
1998). The former makes mutation and spread to other species less likely (Cleaveland
et al. 1999), while the latter is considered beneficial for ongoing transmission (Dobson
1988).

We consider three different strategies of implementing the combined control. First,
we assume that FIV has already been introduced in the cat population by releasing
a given number of infected individuals (henceforth called fixed initial release, FIR).
Then, the optimal control problem consists of finding the optimal culling rate as a
function of time. In the second strategy, we can choose the number of released infected
cats to achieve our objectives (henceforth called optimal initial release, OIR). That is,
we optimize also over this initial value in addition to optimizing over the culling rate.
The third strategy takes into account another way of infecting cats, by which cats are
trapped, ‘manually’ infected and then returned (henceforth called trap–infect–return,
TIR). This is in addition to the second strategy which optimizes over the culling rate
and the number of initially released infected cats.

While the initial release of infected cats is a one-time action, the manual infection
of trapped cats as well as the culling can take place continuously in time. Therefore,
our optimal control problem incorporates both scalar and time-dependent controls.
The scalar control is the initial release of infected cats (via a parameter in the initial
conditions of the differential equations). The time-dependent controls are the culling
rate on the one hand and the TIR rate on the other hand (both via rates with time-
dependent coefficients in the differential equations). The combination of both the
scalar and time-dependent controls is interesting from the mathematical perspective
as it poses a challenge in the optimization process. We approach this by optimizing
first over the time-dependent controls and then over the scalar control.

The mathematical model underlying the optimal control problem is an eco-
epidemiological one, as it takes into account the predator–prey interactions between
cats and birds as well as the disease spread within the cat population. We introduce
this eco-epidemiological model in Sect. 2 and present steady states, their stability,
and reproduction numbers in Sect. 3. We then formulate optimal control problems
for different strategies in Sect. 4, viz fixed initial release and optimal culling, opti-
mal initial release (or parameter optimization) and optimal culling, and optimal initial
release, infection rate and culling. Necessary conditions, characterization, and unique-
ness results are established. Numerical simulations of all three strategies, using a
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forward–backward numerical method, are presented in Sect. 5. We discuss our results
and arrive at conclusions in Sect. 6.

2 Eco-epidemiological Model

In this section, we formulate the eco-epidemiological model that will be the basis of
the optimal control problems in the following sections. The model needs to keep track
of the cat and the bird population on an island situation as well as their ecological
interactions. At the same time, the model needs to incorporate the disease dynamics,
as the transmission of the biocontrol agent, FIV is part of the management strategies to
be investigated. In addition, the model incorporates a culling rate of the cat population.

Eco-epidemiology is a branch of mathematical biology that deals with ecologi-
cal and epidemiological aspects simultaneously. The interaction between ecological
and epidemiological processes can become complex and lead to emergent dynamic
phenomena (e.g., Anderson and May 1986; Hadeler and Freedman 1989; Bate and
Hilker 2013). There are a number of papers modeling diseases in predators (e.g., Xiao
and Van Den Bosch 2003; Hilker and Schmitz 2008; Kooi et al. 2011), and some are
specifically motivated by using FIV to control cats (Courchamp et al. 2000; Cour-
champ and Sugihara 1999; Courchamp et al. 1998; Oliveira and Hilker 2010). Here,
we build upon the model by Oliveira and Hilker (2010), but extend it by a culling
rate and an alternative food source of the cats to account for their generalist hunting
behavior.

Let N (t) denote the density of prey (birds) at time t and P(t) denote the density
of predators (cats) at time t . FIV infection leads to life-long carriers, and there is no
recovery or immunity to FIV (Courchamp and Sugihara 1999). We therefore divide
the cat population into the two classes of susceptibles (S) and infecteds (I ), so that
P(t) = S(t) + I (t) is the total population of predators at time t . The basic eco-
epidemiological model reads

dN

dt
= r N (t)

(
1 − N (t)

K

)
− aN (t)(S(t) + I (t)), (1)

dS

dt
= (b + ε1aN (t))(S(t) + I (t)) − Φ(P(t))S(t)I (t)

P(t)
−(m + h(t) + u(t))S(t), (2)

dI

dt
= Φ(P(t))S(t)I (t)

P(t)
− (m + h(t) + μ)I (t) + u(t)S(t), (3)

with initial conditions

N (0) = N0, S(0) = S0, I (0) = I0. (4)

We assume that in the absence of predators, the prey population grows logistically with
intrinsic per capita growth rate r > 0 and environmental carrying capacity K > 0.
Both susceptible and infected cats prey on birds with a linear functional response and
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an attack rate a per prey and predator. Parameter ε1 is the trophic conversion efficiency
and m the per capita natural mortality rate of cats. Infected cats suffer an additional
disease-induced per capita mortalityμ. Other than that, there is no difference between
susceptible and infected cats (Courchamp et al. 1995). This is also the reason why
we consider nonselective culling as a control with a per capita rate of h(t) ≥ 0.
Besides having an initial amount of infected cats I0 as a potential scalar control, we
also incorporate FIV infectivity in the model by trapping and infecting a fraction of
susceptible predators in the population and releasing them (denoted by TIR control).
Thus, the TIR control function, u(t), is the effort in trapping and infecting susceptible
predators and returning them to the population.

There is no vertical transmission of FIV, i.e., offspring of infected cats are disease-
free, which is why both S and I reproduce into the susceptible class. FIV infection
is thought to occur via direct contact through bites during fights for female monop-
olization or for territorial defense (Courchamp et al. 1998). The term Φ(P) is the
direct transmission rate from susceptible to infected predators, which could be den-
sity dependent with Φ(P) = βddP , if the contact rate between individuals increases
linearly, or frequency dependent withΦ(P) = βfd, if the contact rate between individ-
uals is constant. The former is suitable for cat populations in urban habitats with more
than 1000 individuals per km2 or rural and suburban habitats with 10–100 individuals
per km2, whereas the latter is suitable for populations in rural/suburban habitats with
cat densities between 100 and 1000 per km2 and less than 10 individuals per km2 in
nonanthropized areas (Fromont et al. 1998).

Since cats are opportunistic and generalist predators, we assume that they have
alternative food sources on which they grow with per capita rate b. This also reflects
that cats have a high reproductive capacity and are sexually mature by 5–6months of
age, so that they can sustain high numbers even with high mortality rates (Nutter et al.
2004). If cats depend solely on birds, then b = 0, otherwise, b > 0.

Table 1 gives an overview of the model parameters along with the values used in the
numerical simulations later on aswell as their sources. Thepredation (or attack) rate per
prey and predator, a, and density-dependent transmission rate, βdd, are calculated as
follows: onKerguelen Islands, 3500 cats consumed approximately 1.2million seabirds
per year in 1977 (Pascal 1980). Later on, Chaphuis et al. (1994) estimate that cats kill
more than 3million seabirds a year. So if aN P = 1,200,000 or aNP=3,000,000, with
P = 3,500, and the total population of seabirds is approximated at N = 2,000,000, then
the attack rate per prey and predator is a = 0.00017 or a = 0.00043, respectively. In
our numerical simulations, we use a = 0.00017. On the other hand, Courchamp et al.
(2000) estimate the frequency-dependent transmission rate of cats as βfd = 1.5, and
since the direct transmission rate from susceptible to infected predators is Φ(P) =
βddP for density-dependent transmission or Φ(P) = βfd for frequency-dependent
transmission,we approximate the density-dependent transmission rate asβdd = βfd

S0+I0
,

where S0 = 1173 is the population of susceptible cats at equilibrium and I0 = 100 is
the initial population of infectious cats (assumed). This gives βfd = 0.0012. Later on,
we will use scalar optimization to determine I0.
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Table 1 Parameters of the eco-epidemiological model (1)–(3)

Par. Description Units Value/range References

r Recruitment rate
of birds

year−1 0.1–0.5 Fan et al. (2005), Oliveira and
Hilker (2010), Rounsevel
and Copson (1982)

a Predation rate of
cats on birds

cat−1 year−1 0.00017 Calculation

ε1 Trophic
conversion
efficiency

cat bird−1 0.01–0.03 Oliveira and Hilker (2010),
Pimm (1982)

m Natural death rate
of cats

year−1 0.6 Courchamp and Sugihara
(1999), Fan et al. (2005)

μ Disease-induced
mortality of cats

year−1 0.2 citeCourchamp3

b Birth rate of cats year−1 0.61 Assumed

h Culling rate of
cats

year−1 0–1 Vary

βfd Frequency-
dependent
transmission

year−1 1.5 Courchamp et al. (2000)

βdd Density-
dependent
transmission

cat−1 year−1 0.0012 Calculation

K Carrying capacity
of birds

Birds 2 × 106 Assumed

3 Reproduction Numbers, Steady States and Stability Analysis

Oliveira and Hilker (2010) investigated the equilibrium solutions and stability analysis
of system (1)–(3) when h(t) ≡ 0, u(t) ≡ 0 and b = 0. In this section, we study the
model when h(t) ≡ h > 0, u(t) ≡ 0 and b > 0 (due to sustainability of the population
of cats without birds). First, we change variables to nondimensionalize system (1)–
(3) and thus ease the stability analysis of steady states. We introduce the following
nondimensional variables and parameters:

x = N

K
, y = S

S0
, z = I

S0
, τ = r t, α = aS0

r
,

β = βddS0
r

, δ = b

r
, ξ = aε1K

r
, e = m

r
, γ = μ

r
, θ = h

r
.

This leads to the following nondimensionalized system:

dx

dτ
= x(1 − x) − αx(y + z), (5)

dy

dτ
= δ(y + z) + ξ x(y + z) − βyz − (e + θ)y, (6)
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dz

dτ
= βyz − (e + θ + γ )z. (7)

We list, without proof, the existence of equilibria:

Theorem 1 System (5)–(7) has five possible equilibria:

(i) the trivial equilibrium point (x∗
1 , y

∗
1 , z

∗
1) = (0, 0, 0),

(ii) the cat-free steady state (x∗
2 , 0, 0) = (1, 0, 0),

(iii) the predator–prey coexistence steady state in the disease-free subsystem

(x∗
3 , y

∗
3 , 0) =

(
e + θ − δ

ξ
,
δ + ξ − e − θ

αξ
, 0

)
,

which is biologically feasible if δ < e + θ and δ + ξ > e + θ ,
(iv) the infected predator steady state in the prey-free subsystem

(0, y∗
4 , z

∗
4) =

(
0,

e + θ + γ

β
,
(δ − e − θ)(e + θ + γ )

β(e + θ + γ − δ)

)
,

which is biologically feasible if δ > e + θ and e + θ + γ > δ,
(v) the infected predator–prey coexistence equilibrium (x∗

5 , y
∗
5 , z

∗
5), where

x∗
5 = ξ + γ + e + θ − δ − √

D

2ξ
, y∗

5 = e + θ + γ

β
,

z∗5 = β(ξ + δ) − (e + θ + γ )(β + 2αξ) + β
√
D

2αβξ
,

with D = (δ+ξ − (e+θ +γ ))2+ 4αγ ξ
β

(e + θ + γ ) > 0; x∗
5 and z

∗
5 are positive

if (e + θ + γ )
(
1 − αγ

β

)
> δ and β(ξ + δ) + β

√
D > (e + θ + γ )(β + 2αξ),

respectively.

Using the next-generationmethod (Diekmann et al. 1990, 1991, 2010, 2013; Diek-
mann andHeesterbeek 2000; Driessche andWatmough 2002), we obtain the following
demographic reproduction number,RD , and basic reproduction number,R0, of cats in
the presence of culling, evaluated at the cat-free equilibrium and at the predator–prey
coexistence steady state in the disease-free subsystem, respectively:

RD = δ + ξ

e + θ
and R0 = β(e + θ)(RD − 1)

αξ(e + θ + γ )
. (8)

The demographic reproduction number gives the expected number of offspring
of a predator individual in its lifetime, with the assumption that the prey population
is at carrying capacity. On the other hand, the basic reproduction number, R0, only
makes sense if RD > 1. If RD > 1, predators are sustained, while the disease
establishes itself in the population if R0 > 1. These reproduction numbers give
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insight into the existence and stability of the cat-free steady state and the predator–
prey coexistence equilibrium in the disease-free subsystem. The stability analysis of
equilibria is summarized in Theorem 2.

Theorem 2 (i) The trivial extinction point (0, 0, 0) is unstable.
(ii) The cat-free steady state (1, 0, 0) is stable ifRD < 1 and unstable if RD > 1.
(iii) The predator–prey coexistence steady state in the disease-free subsystem

(x∗
3 , y

∗
3 , 0) exists ifRD > 1 and is stable if R0 < 1.

(iv) The infected predator steady state in the prey-free subsystem (0, y∗
4 , z

∗
4) exists if

RD > 1 and is stable if

γ (e + θ)(RD − 1)

ξR0(e + θ + γ − δ)
> 1.

Proof The stability analysis of the nondimensionalized model (5)–(7) is governed by
the Jacobian matrix

J (x, y, z) =
⎛
⎝1 − 2x − α(y + z) −αx −αx

ξ(y + z) η + ξ x − βz δ + ξ x − βy
0 βz βy − ω

⎞
⎠ , (9)

where η = δ − e − θ and ω = e + θ + γ > 0.

(i) At the trivial extinction point (x∗
1 , y

∗
1 , z

∗
1) = (0, 0, 0), the eigenvalues of (9) are

λ1 = 1 > 0, λ2 = δ − e − θ and λ3 = −(e + θ + γ ) < 0. Hence, the trivial
steady state (0, 0, 0) is unstable.

(ii) At the cat-free steady state (x∗
2 , 0, 0) = (1, 0, 0), the eigenvalues of (9) are

λ1 = −1 < 0, λ2 = (e + θ)(RD − 1) and λ3 = −(e + θ + γ ) < 0. Hence, the
cat-free steady state (1, 0, 0) is stable ifRD < 1 and unstable ifRD > 1.

(iii) At the predator–prey coexistence steady state in the disease-free subsystem(
e+θ−δ

ξ
,

δ+ξ−e−θ
αξ

, 0
)
, one of the eigenvalues of the Jacobian matrix (9) satisfies

λ1 = β

(
δ + ξ − e − θ

αξ

)
− (e + θ + γ ) ≡ (e + θ + γ )(R0 − 1),

and the other two eigenvalues, λ2,3, satisfy the quadratic equation

λ22,3 −
(

δ − e − θ

ξ

)
λ2,3 − (δ − e − θ)(δ + ξ − e − θ)

ξ
= 0.

In this case, η = δ − e − θ < 0. This gives

λ2 = η

2ξ
+ 1

2

√(
η

ξ

)2

+ 4η(e + θ)(RD − 1)

ξ
,

λ3 = η

2ξ
− 1

2

√(
η

ξ

)2

+ 4η(e + θ)(RD − 1)

ξ
.
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96 E. Numfor et al.

Thus, λ2 and λ3 are real and negative roots or complex roots with negative
real parts. Hence, the predator–prey coexistence steady state in the disease-free
subsystem is stable if R0 < 1 and unstable ifR0 > 1.

(iv) At the infected predator steady state in the prey-free subsystem (0, y∗
4 , z

∗
4) =(

0, e+θ+γ
β

,
(δ−e−θ)(e+θ+γ )

β(e+θ+γ−δ)

)
, one of the eigenvalues of the Jacobian matrix (9)

satisfies

λ1 = 1 − α(e + θ + γ )

β
− α(δ − e − θ)(e + θ + γ )

β(e + θ + γ − δ)

= 1 − γ (e + θ)(RD − 1)

ξR0(e + θ + γ − δ)
,

and the other two eigenvalues, λ2,3, satisfy the quadratic equation

λ22,3 −
(

δ(e + θ − δ)

e + θ + γ − δ

)
λ2,3 + (δ − e − θ)(e + θ + γ ) = 0.

In this case, η = δ − e − θ > 0. This gives

λ2 = − δη

2(e + θ + γ − δ)
+ 1

2

√(
δη

e + θ + γ − δ

)2

− 4ηω,

λ3 = − δη

2(e + θ + γ − δ)
− 1

2

√(
δη

e + θ + γ − δ

)2

− 4ηω.

Thus, λ2 and λ3 are real and negative roots or complex roots with negative real
parts. Hence, the steady state (0, y∗

4 , z
∗
4) is stable if γ (e+θ)(RD−1)

ξR0(e+θ+γ−δ)
> 1 and

unstable if γ (e+θ)(RD−1)
ξR0(e+θ+γ−δ)

< 1.

Finally, we examine the stability of the infected predator–prey coexistence equilib-
rium, using the Routh–Hurwitz conditions (Allen 2007; Kot 2001; Murray 1993).

Theorem 3 If (β+αξ)
√
D

αξ
> ξ + γ − e+ θ + δ, 2eξ > (1+ ξ)δ, ξ < 1 and (γ+1)

2ξ (δ +
ξ − (e + θ + γ ) + √

D) > 1 + αγ
β

(e + θ + γ ), then the infected predator–prey

coexistence equilibrium,
(
x∗
5 ,

e+θ+γ
β

, z∗5
)
, is stable.

Proof Eigenvalues of the Jacobian matrix (9) at the point
(
x∗
5 ,

ω
β
, z∗5

)
, where ω =

e + θ + γ , satisfy
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0 =
(
1 − αω

β
− 2x∗

5 − αz∗5 − λ

) [−λ(δ − e + ξ x∗
5 − βz∗5 − λ)

−βz∗5(δ − ω + ξ x∗
5 )

] − αx∗
5

(
ξω

β
+ ξ z∗5

)
λ

−αβx∗
5 z

∗
5

(
ξω

β
+ ξ z∗5

)
.

This leads to the characteristic equation

λ3 + a1λ
2 + a2λ + a3 = 0, (10)

where

a1 = −
(
1 − αω

β
+ δ − e + (ξ − 2)x∗

5 − (α + β)z∗5
)

,

a2 =
(
1 − αω

β
− 2x∗

5 − αz∗5
)

(δ − e + ξ x∗
5 − βz∗5)

+αx∗
5

(
ξω

β
+ ξ z∗5

)
− βz∗5(δ − ω + ξ x∗

5 ),

a3 = βz∗5(δ − ω + ξ x∗
5 )

(
1 − αω

β
− 2x∗

5 − αz∗5
)

+ αβx∗
5 z

∗
5

(
ξω

β
+ ξ z∗5

)
.

With the assumptions in Theorem 3, the characteristic equation (10) satisfies the
following Routh–Hurwitz conditions: a1 > 0, a3 > 0 and a1a2 > a3. Thus, the eigen-
values of equation (10) have negative real parts, and hence, the infected predator–prey
coexistence equilibrium is stable.

We are finished with the nondimensionalized system and will return to system (1)–
(3). In a situation requiring control of the cat population, we will formulate an optimal
control problem and investigate harvesting and disease-related control strategies.

4 Optimal Control Formulation and Analysis

Besides two time-varying controls, h(t) and u(t), the scalar, I0, is also taken as a
control,meaning that the initial infected predator population is to be chosen. Therefore,
using system (1)−(3), we minimize the objective functional

J (I0, h, u) = A3 I
2
0 +

∫ t1

0
(A1(S(t) + I (t)) − A2N (t))dt

+
∫ t1

0
(ch(t)(S(t) + I (t)) + εh(t)2)dt

+
∫ t1

0
(B1u(t)S(t) + B2u(t)2)dt, (11)
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98 E. Numfor et al.

over time-dependent controls h(t) and u(t), and scalar control I (0) = I0. Weight
constants, A1, A2, A3, B1, B2, c, and ε are nonnegative constants that balance the
relative importance of terms in J . The terms

∫ t1
0 (A1(S(t)+ I (t))dt and

∫ t1
0 A2N (t)dt

in the objective functional give the respective numbers of cats and birds over the time
period t1 being modeled. The term h(S+ I ) represents the total number of cats culled,
where h represents the per capita rate of culling cats from the population, and c is the
cost per cat culled. Thus,

∫ t1
0 (ch(t)(S(t) + I (t)) + εh2(t))dt gives the cost of culling

cats from the population. The coefficient B1 converts the total number of susceptible
cats trapped and infected with FIV to the cost of infecting susceptible cats, so that
B1uS+ B2u2 represents the total cost of trapping and infecting susceptible cats in the
population. The term A3 I 20 represents a cost to have initial infected predator popula-
tion, I0. As the costs in an objective functional are frequently nonlinear functions of
the control actions (Gaff and Schaefer 2009; Lenhart and Workman 2007), we chose
quadratic terms for our costs (with B2 and ε). The optimal control formulation for our
problem involving culling, infection rate, and parameter optimization (optimal initial
release) is: Find (I ∗

0 , h∗, u∗) ∈ U such that

J (I ∗
0 , h∗, u∗) = inf

I0

(
inf
h,u

J (I0, h, u)

)
(12)

subject to the state system defined in Eqs. (1)–(3), where the objective functional is
given by equation (11), and the set of all admissible controls is

U = {(I0, h, u) ∈ M × (L∞([0, t1]))2| h : [0, t1]
→ [0, hmax ], u : [0, t1] → [0, umax ]},

with a finite set M ⊂ N, the set of natural numbers.
In order to prove the existence of an optimal control problem, we require the state

functions of the eco-epidemiological model to be bounded. The positivity and bound-
edness results below follow from the structure of the system.

Theorem 4 Given the state equations for N, S, and I defined in Eqs. (1)–(3) with
initial conditions (4), and N0 ≥ 0, S0 ≥ 0, I0 ≥ 0, there exist constantsC1, C2, C3 >

0 such that 0 < N (t) ≤ C1, 0 < S(t) ≤ C2 and 0 ≤ I (t) ≤ C3, for all t ∈ [0, t1].

One reasonable approach to optimize over both parameter and time-dependent
controls is to start with the time-dependent controls and incorporate the parameter
optimization afterward. To use Pontryagin’s maximum principle (Pontryagin et al.
1967) on the time-dependent controls, we first need existence of a triple of optimal
controls, and characterize the time-dependent controls and adjoint equations for system
(1)–(3), when density- and frequency-dependent transmission rates are studied.

Theorem 5 There exist optimal controls (I ∗
0 , h∗, u∗) ∈ U which minimize the objec-

tive functional, J , subject to the state system (1)–(3).
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Proof By the uniform boundedness of states and controls, the infimum is finite, and
thus, there exist minimizing sequences {I n0 }, {hn}, {un}:

lim
n→∞ J (I n0 , hn, un) = inf

(I0,h,u)∈U
J (I0, h, u).

Since the corresponding states Nn , Sn , and In are uniformly bounded for all n over
the interval [0, t1] and from the structure of system (1)−(3), it follows that their
derivatives are also uniformly bounded. Thus, Nn , Sn , and In are Lipschitz continuous
with the same Lipschitz constant. Thus, the sequence {Nn, Sn, In} is equicontinuous,
and therefore, by Arzela–Ascoli theorem, there exists (N∗, S∗, I ∗) such that on a
subsequence,

(Nn, Sn, In) → (N∗, S∗, I ∗) uniformly on [0, t1].

Also, the control sequences, hn and un , are bounded for any n and t , so there exist
subsequences I nk0 , hnk and unk , and controls (I ∗

0 , h∗, u∗) ∈ U such that

I nk0 → I ∗
0 , and hnk ⇀ h∗, unk ⇀ u∗ weakly in L2([0, t1]).

Using the lower-semicontinuity of L2 norms with respect to weak convergence, we
have

J (I ∗
0 , h∗, u∗) ≤ A3(I

∗
0 )2 + lim inf

n→∞

∫ t1

0
(A1(Sn(t) + In(t)) − A2Nn(t))dt

+ lim inf
n→∞

∫ t1

0
(chn(t)(Sn(t) + In(t)) + εhn(t)

2)dt

+ lim inf
n→∞

∫ t1

0
(B1un(t)Sn(t) + B2un(t)

2)dt

= inf
(I0,h,u)∈U

J (I0, h, u).

Using the convergence of the state sequences and passing to the limit in the ODE
system, we have that N∗, S∗, and I ∗ are the states corresponding to the controls I ∗

0 ,
h∗, and u∗. Note that the uniform convergence of states and the weak convergence of
the controls are needed for the convergence of terms like hnSn . Since I ∗

0 ∈ M ⊂ N,
where M is finite, we conclude that (I ∗

0 , h∗, u∗) is a triple of optimal controls.

We characterize the time-dependent controls and the corresponding adjoint equa-
tions, when density- and frequency-dependent transmission rates are studied. We fix
I0 ∈ M first and apply Pontryagin’s maximum principle (Pontryagin et al. 1967) to
our problem.

In finding min
h,u

J (I0, h, u), we use the Hamiltonian

H = A1(S + I ) − A2N + ch(S + I ) + εh2 + B1uS + B2u
2

+ λN (r N

(
1 − N

K

)
− aN (S + I ))
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+ λS

(
(b + ε1aN )(S + I ) − Φ(P)SI

P
− (m + h + u)S

)

+ λI

(
Φ(P)SI

P
− (m + h + μ)I + uS

)
,

whereλN ,λS , andλI are adjoint functions associatedwith the state functions N , S, and
I , respectively. The following two theorems characterize optimal culling and infection
rate when density- and frequency-dependent transmission rates are considered.

Theorem 6 Given a fixed initial release, I0, and for density-dependent transmis-
sion, with optimal controls h∗ = h∗(I0) and u∗ = u∗(I0), and corresponding states
N∗, S∗, and I ∗, there exist adjoint functions λN , λS, and λI satisfying the equations

λ′
N =

(
−r + 2r N∗

K
+ aP∗

)
λN − ε1aP

∗λS + A2, (13)

λ′
S(t) = −(b + ε1aN

∗ − βdd I
∗ − (m + h∗ + u∗))λS + aN∗λN

− (βdd I
∗ + u∗)λI − ch∗ − B1u

∗ − A1, (14)

λ′
I (t) = aN∗λN − (b + ε1aN

∗ − βddS
∗)λS

− (βddS
∗ − (m + h∗ + μ))λI − ch∗ − A1, (15)

with final time conditions

λN (t1) = λS(t1) = λI (t1) = 0. (16)

Furthermore, the optimal control characterization for the time-dependent controls, h∗
and u∗, is

h∗(t) = min

{
hmax,max

{
0,

S∗(t)λS(t) + I ∗(t)λI (t)

2ε
− c(S∗(t) + I ∗(t))

2ε

}}
,

(17)

u∗(t) = min

{
umax,max

{
0,

S∗(t)(λS(t) − λI (t) − B1)

2B2

}}
. (18)

Proof The adjoint equations are obtained from the partial derivatives of the Hamil-
tonian, H with respect to each state variable. That is,

λ′
N (t) = −∂H

∂N
, λ′

S(t) = −∂H

∂S
, and λ′

I (t) = −∂H

∂ I
.

Using

∂H

∂h
= c(S + I ) + 2εh − SλS − IλI = 0,

∂H

∂u
= B1S + 2B2u − SλS + SλI = 0,
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on the interior of the control set, the optimal control characterizations given inEqs. (17)
and (18) are obtained.

Theorem 7 Given a fixed initial release, I0, and for frequency-dependent transmis-
sion, with optimal controls h∗ = h∗(I0) and u∗ = u∗(I0), and corresponding states
N∗, S∗, and I ∗, there exist adjoint functions λN , λS, and λI satisfying the equations

λ′
N =

(
−r + 2r N∗

K
+ aP∗

)
λN − ε1aP

∗λS + A2, (19)

λ′
S = aN∗λN −

(
b + ε1aN

∗ − βfd

(
I

P

)2

− m − h∗ − u∗
)

λS

−
(

βfd

(
I

P∗

)2

+ u∗
)

λI

− ch∗ − B1u
∗ − A1, (20)

λ′
I = aN∗λN −

(
b + ε1aN

∗ − βfd

(
S∗

P∗

)2
)

λS

−
(

βfd

(
S∗

P∗

)2

− m − h∗ − μ

)
λI − ch∗ − A1, (21)

with final time conditions (16), and optimal control characterizations as in (17) and
(18) of Theorem 6.

Proof Follows as in Theorem 6.

Remark The adjoint systems in Theorems 6 and 7 are linear in λN , λS , and λI . Since
we have a linear system in finite time with bounded coefficients, it follows that λN , λS ,
and λI are uniformly bounded. Using the boundedness of state and adjoint functions,
it can be shown that the solution of the optimality system is unique for t1 small.

5 Numerical Simulations

In this section, we investigate different control strategies for the model with density-
dependent transmission in numerical simulations. The three management programs
considered are: (i) a fixed initial release of infected cats; (ii) an optimal initial release
of infected cats; and (iii) a trap–infect–return control program. All of these controls
are combined with optimal culling, but we will also consider the case without culling.

We start by investigating three reference scenarios, consisting of birds and cats pop-
ulation dynamics in the absence of any control. They correspond to the three types of
qualitative behavior identified in the stability analysis of Sect. 3. When investigating
the control strategies, we will consider the impact of different initial conditions, the
time horizon over which control can be implemented, and different cost parameteri-
zations. Before doing so, we describe the numerical details.
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Table 2 Weight constants and
upper bounds of culling and
TIR-infection rates

Parameter A1 A2 A3 B1 B2 c ε hmax umax

Value 1 1 0.1 1 200 1 100 0.3 0.2

5.1 Numerical Integration Method and Parameter Values

The optimality system is solved using an iterative scheme.A forward–backward sweep
method (Lenhart and Workman 2007), using the fourth-order Runge–Kutta, is used
to solve for the state and adjoint equations. Starting with an initial condition for the
state functions and an initial guess for the control, a forward sweep with fourth-order
Runge–Kutta is used to obtain an approximate solution to the state equations. Using
this estimate and the final time conditions, the solution to the adjoint system is approxi-
mated using a backward sweep with fourth-order Runge–Kutta method. The control is
updated by using an average of its previous values and values from the control charac-
terization (Lenhart andWorkman 2007). Previous steps are repeated until consecutive
iterates of controls, states, and adjoints are sufficiently close. The convergence of the
forward–backward sweep method is based on the work by Hackbusch (1978).

The parameter values used in our numerical simulations, unless stated otherwise,
are presented in Tables 1 and 2. The TIR control may be difficult to implement at a high
rate, as trapping, infecting, and returning of cats are costly and challenging. Therefore,
we use a smaller number for the upper bound of the TIR rate u(t), and B2 > ε.
Irrespective of the duration of control at the present level of culling (hmax = 0.3) and
TIR rate (umax = 0.2), in the simulations performed the optimal TIR rate lasts for a
shorter period of time at its maximum level compared to the optimal culling rate.

5.2 Reference Scenarios

We consider three reference scenarios in which there is no control implemented yet.
That is, there is no culling and FIV. In each case, we assume initial values of 2million
birds and 3500 cats.

In the first reference scenario, cats depend solely on birds for survival, i.e., b = 0.
Figure 1a, b shows that the cats initially increase in population size but cannot persist on
the birds alone and eventually go extinct. This allows the birds to recover. Henceforth,
we will refer to this scenario as cat extinction scenario.

The remaining reference scenarios take into account that cats are opportunistic
predators and feed on alternative food sources, i.e., b > 0. In the second reference
scenario, the supply of alternative food is so high (b > m) that cats can persist without
birds. Figure 1c, d shows that the cat population size rapidly increases and extinguishes
the birds, after which the cat population size grow at a slower rate. We will refer to
this case as bird extinction scenario.

In the third reference scenario, the supply of alternative food is at some intermediate
level (0 < b < m). This allows cats to persist, and predation pressure on birds is not
too high, so that both species can coexist, cf. Fig. 1e, f. We will refer to this case as
coexistence scenario.
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Fig. 1 Reference scenarios in the absence of any control. a, b cat extinction scenario, in which cats are
specialist predators (b = 0). c, d bird extinction scenario, in which cats are generalist predators and b > m,
with b = 0.61. e, f coexistence scenario, in which cats are generalist predators and 0 < b < m, with
b = 0.5. All other parameter values as in Table 1. Model (1)–(3) with h(t) = u(t) = I0 = 0 and initial
conditions N0 = 2 × 106 and P0 = 3500

The three reference scenarios reflect the results from the stability analysis, in the
absence of culling and disease control. If the cats’ birth rate from alternative food
sources is larger than their natural mortality (b > m or, equivalently, if δ > e in
terms of nondimensionalized parameters), the predator steady state in the prey-free
subsystem is stable. On the other hand, if b < m, the predator–prey coexistence steady
state in the disease-free subsystem is stable.

5.3 Fixed Initial Release (FIR) Control and Optimal Culling

Wenow assume an initial condition that is the equilibrium point of susceptible cats and
birds in the absence of disease and culling. First, we consider the coexistence scenario
and introduce FIV as a biological control agent. This is assumed as fixed initial release,
i.e., with an initial condition fixed at I0 = 100. Figure 2 shows trajectories for birds,
susceptible cats, and infectious cats over time.Weadditionally consider optimal culling
over a period of 4years on the one hand and the absence of culling on the other hand.
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Fig. 2 Fixed initial release strategy and optimal culling in the coexistence scenario (0 < b < m) with the
uncontrolled coexistence equilibrium as initial condition. N0 = 5883, S0 = 1173, I0 = 100, m = 0.61,
b = 0.60, and βdd = 0.0012

In the absence of culling, the disease spreads within the cat population with the
number of infectious cats rapidly increasing. The total cat population initially shows
a slight increase to be followed by a slight decrease. Overall, the cats remain at a high
level above their initial value. The bird population steadily declines.

In the presence of (optimal) culling, the decline of the bird population is reversed to
an increase. The total population of cats decreases within the first 2.9years, followed
by a short slight increase. The culling effort is at its maximum value within the first
2.9years, followed by a sharp decline between years 2.9 and 3.1, with no culling effort
afterward. Of the 100 infectious cats initially introduced, approximately 50 remain at
the end of the control period.

Even though the combination of biocontrol and optimal culling is efficacious in
reducing the cat population and letting the birds recover, the results in Fig. 2 suggest
that this control strategy is insufficient in controlling the population of cats, since the
total cat population size shows an increasing trend at about 600 individuals toward
the end of the control period. Thus, for the coexistence scenario in Fig. 2, if the birth
rate of cats is smaller than their background mortality, then the fixed initial release
strategy may not suffice as a control strategy in eradicating cats.

Second, we now investigate the situation where the birth rate of cats is greater
than their background mortality, which corresponds to the bird extinction scenario.
As initial condition, we assume the bird population at half their carrying capacity.
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Fig. 3 Fixed initial release strategy and optimal culling in the bird extinction scenario (b > m) with birds
at half their carrying capacity as initial condition. N0 = 1 × 106, S0 = 14000, I0 = 100, K = 2 × 106,
and βdd = 0.0001

The initial population of susceptible cats corresponds to the population of cats at the
time when the population of birds is one-half their carrying capacity. In the absence
of culling, the population of cats rises sharply at first and decreases afterward (Fig. 3).
In the presence of culling, there is still the sharp initial increase in the total population
of cats; the following decrease is stronger, with fewer cats observed at the end of the
control period. Infectious cats show a similar hump-shaped pattern in population size
over time, but their peak growth period is delayed. The population of birds reduces for
the first 6months and eventually becomes extinct, both in the presence and absence
of control.

The rapid bird extinction observed in Fig. 3 may be due to the high predation pres-
sure caused by the initial condition. We therefore consider, third, an initial condition
with low levels of cats and birds (Fig. 4), still in the bird extinction scenario. The bird
population still decreases, but does not go extinct during the control period. Culling
promotes the level of bird population. Biocontrol alone reduces the total cat popu-
lation somewhat, but the joint control with culling reduces the cats to a much lower
level. The culling effort is at its maximum for the first 2.5years, followed by a steady
decrease between years 2.5 and 3, and no culling effort afterward.

With the initial condition in Fig. 4, and again for the bird extinction scenario,
birds persist over the control period, while the stability analysis for this scenario
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Fig. 4 Fixed initial release strategy and optimal culling in the bird extinction scenario (b > m) and with
low levels of cats and birds as initial condition. N0 = 2000, S0 = 195, I0 = 100, K = 2000, and
βdd = 0.0051. Here, the initial number of infected cats released is optimal, so this control corresponds to
optimal initial release control

predicts asymptotic bird extinction. Both the results in Figs. 2 (coexistence) and 3
(bird extinction) corroborate the stability results in Theorem 2 within the time horizon
considered.

Despite considering different scenarios and different initial conditions, the fixed
release strategy with optimal culling did not achieve cat eradication or substantial bird
recovery in the simulations performed. In the following, we incorporate the initial
population of infectious cats as a scalar control and investigate the effect of combining
optimal culling with the scalar optimization.

5.4 Parameter Optimization

For the OIR and TIR controls, we wish to determine the optimal parameter I ∗
0 for the

initial release of infected cats. In order to do, we find the J values for each I0 ∈ M ,
using the optimal harvest, h∗(I0), and optimal effort in trapping–infecting–returning
susceptible predators, u∗(I0), in the objective functional given in Eq. (11). Thus, we
find I ∗

0 such that

J (I ∗
0 , h∗(I ∗

0 ), u∗(I ∗
0 )) = min

I0∈M
J (I0, h

∗(I0), u∗(I0)) (22)
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Table 3 Scalar optimization of (22) when A3 = 0.1

I0 Value of J for t = 4 years Value of J for t = 10 years

10 367,750.5 504,261.2

20 363,143.7 497,749.7

30 360,680.3 494,263.9

50 358,016.0 490,430.7

75 356,488.4 488,094.2

100 355,943.1∗ 487,055.7

150 356,463.8 487,026.8∗
200 358,335.9 488,640.0

300 364,784.0 494,968.9

400 374,034.8 504,363.8

600 399,596.6 530,572.1

1000 476,229.5 609,094.8

Asterisks indicate extremal values

numerically. We illustrate this idea using

M = {10, 20, 30, 50, 75, 100, 150, 200, 300, 400, 600, 1000}.

Table 3 gives values of the objective functional, J , evaluated at h∗(I0) and u∗(I0),
for I0 ∈ M , with A3 = 0.1. The optimal parameter I ∗

0 is 100 infectious cats for a time
horizon of 4years, and I ∗ is 150 infectious cats for a time horizon of 10years. When
A3 = 0.01 (meaning lower cost of this I0 action), the optimal parameter I ∗

0 increases
to 150 infectious cats for a time horizon of 4years, and I ∗

0 increases to 200 infectious
cats for a time horizon of 10years.

5.5 Optimal Initial Release (OIR) Control and Optimal Culling

In the OIR control, we find the optimal scalar using the optimal culling, h∗(I0), but
with no TIR control (i.e., u(t) = 0). For a control period of 4years, the optimal
parameter I ∗

0 is 100 infectious cats. This case is already shown in Fig. 4 for the bird
extinction scenario with low levels of birds and cats as initial condition. That is, in
this case FIR is the same as OIR when I ∗

0 = 100.
So far, we have been considered time horizons of 4years for the control. If we allow

control to take place over a period of 10years, the results change to the ones shown
in Fig. 5. Note that the optimal number of infectious cats correspondingly changes to
I ∗
0 = 150.
Without any culling, the bird population continually declines, but with optimal

culling the declining trend reverses halfway through the control period, and the bird
population size increases even though it does not reach its initial value. The total cat
population size continually decreases with or without culling. The optimal effort in
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Fig. 5 Time horizon of t = 10years. Optimal initial release strategy and optimal culling with I∗0 = 150 in
the bird extinction scenario (b > m) and with low levels of cats and birds as initial condition. N0 = 2000,
S0 = 195, K = 2000, and βdd = 0.0043

culling is at its maximum level for approximately 7years and decreases between 7 and
9years. Within the last year, no culling effort is required.

Finally, we return to a 4-year control period and consider the coexistence scenario.
With the uncontrolled coexistence equilibrium as initial condition, Fig. 6 shows that
both optimal initial release andoptimal culling increase the bird population size beyond
its initial value. The total cat population reduces to approximately half its initial value.
In the absence of culling, the bird population declines slightly, and the total number
of cats remains roughly unchanged.

5.6 Trap–infect–return (TIR) Control with OIR and Optimal Culling

We now consider a control program that combines trapping, infecting, and returning
cats with an optimal initial release of infectious cats as well as optimal culling of
cats. Figure 7 shows the results for the bird extinction scenario. The TIR control rate,
u(t) in the population lasts for 2years at its optimal level, followed by a decrease
and eventually with no control effort afterward. The bird population survives and
seems to approach a stationary value at the end of the control period. The quantitative
level is similar to the control program without TIR, cf. Fig. 4. The time plot of the
cat population shows a slightly different pattern, because the total population size
continues to decline over almost the entire control period. This may be caused by the
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Fig. 6 Optimal initial release strategy and optimal culling with I∗0 = 100 in the coexistence scenario
(0 < b < m) with the uncontrolled coexistence equilibrium as initial condition. N0 = 5883, S0 = 1173,
K = 2 × 106, βdd = 0.0011, m = 0.61, and b = 0.60

culling that is at its maximum effort over almost the entire period (in contrast to the
OIR program where culling ceases after 3years; see Fig. 4).

In Fig. 8, the control period is extended to 10years. The TIR control reaches its
maximum level for 6years, i.e., for four more years in comparison with the shorter
control period, before it decreases and ceases. The optimal culling takes on maximum
values also over a longer time period in comparisonwith the 4-year control horizon. As
a consequence, the bird decline can be reversed to increasing numbers in comparison
with Fig. 7. The total cat population is considerably reduced at the end of the control
period, and the infectious cats approach extinction.

In comparison with the 10-year management program without TIR (Fig. 5), the
results have improved somewhat in terms of increased bird numbers and decreased
cat numbers at the end of the control period. However, there is not only extra TIR
control, but also the effort in culling is longer at its maximal level due to the TIR of
susceptible cats in the population.

In the absence of both TIR and culling (red solid lines in Figs. 7 and 8), the results
are by definition the same as for biocontrol with OIR only (red solid lines in Figs. 4, 5).

6 Discussion

Since invasive mammals are notoriously difficult to control, we have considered com-
bined management strategies that integrate culling and biocontrol with a host-specific
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Fig. 7 Trap–infect–return (TIR) control, optimal initial release (OIR), and optimal culling with I∗0 = 100
in the bird extinction scenario (b > m) and with low levels of cats and birds as initial condition. N0 = 2000,
S0 = 195, K = 2000, and βdd = 0.005
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Fig. 8 Time horizon increased from t = 4years to t = 10years. Trap–infect–return (TIR) control, optimal
initial release (OIR), and optimal culling with I∗0 = 150 in the bird extinction scenario (b > m) and with
low levels of cats and birds as initial condition. Other parameter values as in Fig. 7
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pathogen. Our models are motivated by invasive cats that threaten native birds on
oceanic islands. A candidate biocontrol agent is feline immunodeficiency virus. There
are two different ways of introducing the infectious disease. On the one hand, infected
individuals can be released. This is modeled in form of an initial condition and enters
the optimal control problem in form of a scalar control. On the other hand, cats can
be trapped, infected, and then returned. This is modeled as a nonautonomous rate and
thus enters the optimal control problem in form of a time-varying control. Culling is
a time-varying control as well. Our optimal control problems therefore involve both
scalar and time-dependent controls.

Overall, the results appear sensitive to a number of aspects, including the initial
condition and the length of the control period. Moreover, they depend on a number
of cost coefficients and weight constants. A thorough investigation of all influencing
factors appears impossible,which iswhywe focus on thenumerical simulations shown.

6.1 Effect of Combined Control

In the simulations performed, the combination of mechanical and biological control
proves effective. In comparison with biocontrol only, additional optimal culling has
the following two broad effects. First, it can reverse bird decline (in the absence of
culling) to an increasing bird population (in the presence of culling). The population
of cats is further reduced by culling. This can be observed for FIR and OIR manage-
ment strategies in the coexistence scenario (Figs. 2, 6, respectively) and for 10-year
control programs (Figs. 5, 8). Second, in the bird extinction scenarios, the additional
optimal culling leads to the birds surviving at a higher quantitative level than in the
absence of mechanical control. Similarly, the total cat numbers are controlled to a
lower quantitative level than with biocontrol only. This can be observed for the man-
agement strategies of FIR/OIR (Figs. 4, 5) with optimal culling and for all three cases
with TIR, OIR, and optimal culling (Figs. 7, 8).

In our simulation, we have focused on the bird extinction scenario as this seems the
most pressing one. The only case in which the birds did not survive at the end of the
control period was for an initial condition in which birds were at half their carrying
capacity. The corresponding initial value of cats may be simply too large and cause
a predation pressure that drives the birds extinct. This is also the only case in which
total cat numbers were not reduced at the end of the control period in comparison with
their initial value.

6.2 Impact of Initial Conditions

Clearly, the initial conditions seem to play a large role. This is not surprising, as
we consider a limited time period and transients resulting from initial conditions are
important. The importance of initial conditions is well known in ecological modeling
(e.g., Hastings 2004), and in turn, these conditions affect the optimal control results.
The simulations performed here were based on three different initial conditions. The
first one corresponds to the coexistence equilibrium of the uncontrolled system. In this
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case, the birds show a sharp rise in population size (Figs. 2, 6). In fact, these are the
only cases where bird numbers have increased at the end of the control period.

Second, in the majority of simulations we have considered low levels of birds and
cats. This initial condition showed the greatest variety in response. The bird numbers
continually declined (Fig. 4); declined initially and approached a stationary value
(Fig. 6); declined initially but started to rise (Figs. 5, 8). In any case, despite the
control, the bird population size always decreased in comparison with their initial
value.

The third initial condition is the one where birds are at half their carrying capacity.
As already discussed, this is the only one leading to bird extinction despite control
(Fig. 3).

6.3 Length of the Control Period

If the length of the control period increases from 4 to 10years, the response of the bird
population size to the control program is not monotonous anymore in our simulations.
Instead, we observe in each case an initial decrease of bird numbers to be followed by
an increase (Figs. 5, 8). Yet, the bird numbers are reduced at the end of the 10-year
control period compared to their initial value.

In each of these cases, the total cat population continually declines and seems to
approach a stationaryvalue at lownumbers. In fact, these are the smallest cat population
sizes observed in all simulations.

In reality, the length of control programs varies considerably. Cat eradication tech-
niques on Jarvis Island took place for less than a year (Chaphuis et al. 1994). A
secondary shooting campaign on Kerguelen Islands lasted 7years (Chaphuis et al.
1994). The full-scale implementation of hunting on Marion Island lasted 4years, but
the entire eradication program including preparation and test periods took 19years.

6.4 Adaptive Management Programs

Rather than pursuing a certain control strategy over the entire time period,management
programs in practice are often adaptive. That is, a control strategy can be applied for
a short period of time and then be re-evaluated to determine how to continue with the
strategy or if an alternative approach is required. To some extent, this is implicit in
our optimal control problem, as the time-varying controls may rest at certain times.
This can be observed in our simulations toward the end of the control periods, when
optimal culling rates as well as optimal TIR rates become zero.

Management programs may also involve separate phases dedicated at monitoring
population responses and testing control implementations. For instance, the 19-year
cat eradication campaign on Marion Island comprised seven different phases (Bester
et al. 2002).
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6.5 Extinction of Infected Cats

With a control period of 10years, the infected cat population goes extinct after about
7–9years. In the case of OIR control, this seems to coincide with the point of time
where culling effort becomes zero (Fig. 5). In the case of TIR control, it seems to
happen when the TIR rate vanishes (Fig. 8). Therefore, once the infectious cats are
extinct, the biocontrol is removed from the system and the only remaining control is
culling.

The disappearance of FIV infection is noteworthy as one advantage ascribed to
biocontrol is its self-persistence over a longer period of time (Courchamp et al. 2003).
However, it is also well known that biocontrol becomes less effective after some time,
which is why it may be backed up or followed by mechanical control (e.g., Dobson
1988; Bester et al. 2002).

The extinction of infectious cats is also noteworthy because it seems to be driven
by the other form of control, namely culling. Since the goal was the combination of
different control types, the disease extinction seems undesirable. Yet, it appears that
this combination is effective as the extinction of infectious cats precedes the eventual
cat eradication if time went on, see Figs. 5 and 8. The joint interplay of infection and
culling has reduced the cat population to small numbers, but the disease does not seem
effective in cat eradication, which is why this would remain the job of culling.

In these simulations, the disease transmission is density dependent. Therefore,
infections vanish at small host population sizes, which is why cat eradication is not
possible due to the disease only. The resultsmight be different for frequency-dependent
transmission, because disease transmission is ongoing even in small host populations.
However, as this may be considered an artifact as the cats approach eradication, we
have considered only the more conservative case of density-dependent transmission
in our simulations.

6.6 Eradicating the Last Remaining Individuals

The preceding discussion points to the importance of removing the last few individuals
of the cat population if the aimwere eradication. There may be good reasons to control
but preserve the cat population (e.g., Courchampet al. 1999;Rayner et al. 2007;Russell
et al. 2009), and the definition of our objective functional actually includes only the
reduction in the cat population.

Nevertheless, it is worthwhile discussing the difficulty of removing the last indi-
viduals, because the effort in doing so may increase significantly or even drastically.
We could include these considerations in our optimal control problem by defining
corresponding cost terms in the objective functional. For instance, the cost of culling
and/or TIR control could increase when cat numbers become small.

6.7 TIR Control

The TIR control program involves enormous expenditures as cats need to be trapped,
infected, and returned. In our simulations, this occurs in addition to the initial release

123



114 E. Numfor et al.

of infected individuals and the culling of cats. Considering the extra expenditures, the
effect of TIR in terms of bird and cat population size seems rather disappointing, as
there is only little quantitative change (compare Fig. 5 with Fig. 8). In particular, it
seems surprising that culling at maximal effort lasts longer in the presence of TIR.
These observations may be caused by the particular choice of cost coefficients and
could change if their values were varied.

6.8 Model Formulation and Analysis

We formulated a predator–preymodel that includes culling and disease-related control,
with the objective of reducing the cat population size and raising the population of
birds.With a specialist predator model which assumes that cats depend solely on births
for survival, cats exponentially decline in the absence of birds. This is not realistic,
since cats are opportunistic predators, switching prey according to their spatial and
temporal availability. Thus, we incorporated a birth term for the cats that models
alternative food sources. Provided this birth term is greater than the death term, the
cats will grow exponentially in the absence of birds and disease. In the presence of
disease (and no birds), the cats are shown to approach a stable endemic equilibrium.
This is an example of an infectious disease regulating unbounded host population
growth.

We obtained the basic and demographic reproduction numbers for cats in the model
and established conditions for the existence of various steady states. Their stabilitywas
studied as well, which served later on as reference scenarios for the optimal control
simulations.

6.9 Conclusions

The combination of culling and biocontrol in an integrated management approach is
a recurrent topic pertinent to invasive mammals and the harm they cause. Yet, there is
little modeling insight. Here, we have studied an optimal control problem that brings
both mechanical and biological control together.

The results appear to be influenced by a large number of factors. In addition to
eco-epidemiological parameters (which determine the reference scenario), there are
parameters related to the cost of control, their weighting in the objective functional,
the length of the control period, and the initial condition. If the initial population of
pest species is unknown, then optimal control tools can give an appropriate rule of
thumb on how to proceed.

The impact of the management programs on the bird population seems to be mainly
driven by the initial condition, while the near eradication of the cats seems to require a
prolonged control period. More detailed conclusions and management recommenda-
tionswill necessitate improved knowledge of parameter values or a systematic analysis
of their uncertainty.

The current study has identified a number of factors that seem important in this
respect and deserve further study. Moreover, our problem formulation and analysis
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have provided a means to study optimal control with both scalar (number of infected
cats released) and time-varying (culling and TIR rate) controls.
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