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A b s t r a c t - - A n  excitable model of phytoplankton-zooplankton dynamics is considered for the case 
of lysogenic viral infection of the phytoplankton population. The phytoplankton population is split 
into a susceptible (S) and an infected (I) part. Both parts grow logistically, limited by a common 
carrying capacity. Zooplankton (Z) is grazing on susceptibles and infected, following a Holling Type- 
III functional response. The local analysis of the S-I-Z differential equations yields a number of 
stationary and/or oscillatory regimes and their combinations. Correspondingly interesting is the 
spatiotemporal behaviour, modelled by stochastic reaction-diffusion equations. Spatial spread or 
suppression of infection will be presented just ms well as competition of concentric and/or spiral 
population waves for space. The external noise can enhance the survival and spread of susceptibles 
and infected, respectively, that would go extinct in a deterministic environment. In the parameter 
range of excitability, noise can induce local blooms of susceptibles and infected. @ 2005 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - P l a n k t o n ,  Excitability, Viral infections, Lysogeny, Stochastic reaction-diffusion sys- 
tem, Noise-enhanced spatial spread and survival, Spatiotemporal structures. 

1. I N T R O D U C T I O N  

Viruses are ev iden t ly  the  most  abundan t  ent i t ies  in the  sea and the  ques t ion  may  arise whe the r  

they  control  ocean life. However,  there  is much less known abou t  mar ine  viruses and their  role in 

aqua t ic  ecosys tems and the  species t h a t  they  infect, t h a n  abou t  p l ank ton  patchiness  and bloom- 

ing, for reviews, cf., [1]. A number  of s tudies [2-6] shows the  presence of pa thogen ic  viruses in 

phy top lank ton  communi t ies .  F u h r m a n  [1] has reviewed the  na tu re  of mar ine  viruses and thei r  

ecological  as well as biogeological  effects. Sut t le  et al. [5] have shown by using electron mi- 

croscopy t h a t  the  viral  disease can infect bac te r ia  and p h y t o p l a n k t o n  in coasta l  water .  Paras i tes  
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may modify the behaviour of the infected members of the prey population. Virus-like particles 
are described for many eukaryotic algae [7,8], cyanobacteria [9] and natural phytoplankton com- 
munities [10]. There is some evidence that  viral infection might accelerate the termination of 
phytoplankton blooms [11,12]. Viruses are held responsible for the collapse of Erniliania huzleyi  

blooms in mesocosms [13] and in the North Sea [14] and are shown to induce lysis of Chrysochro- 

rnulina [15]. Because most viruses are strain-specific, they can increase genetic diversity [16]. 
Nevertheless, despite the increasing number of reports, the role of viral infection in the phyto- 
plankton population is still far from understood. 

Viral infections of phytoplankton cells can be lysogenic or lyric. The understanding of the 
importance of lysogeny is just at the beginning [17-20]. Contrary to lytic infections with de- 
struction and without reproduction of the host cell, lysogenie infections are a strategy whereby 
viruses integrate their genome into the host's genome. As the host reproduces and duplicates its 
genome, the viral genome reproduces, too. 

Mathematical models of the dynamics of vitally infected phytoplankton populations are rare 
as well, the already classical publication is by Beltrami and Carroll [21]. More recent work is 
of Chattopadhyay et al. [22,23]. The latter deal with lytic infections and mass action incidence 
functions. Malchow et al. [24] observed oscillations and waves in a phytoplankton-zooplankton 
system with Holling Type-II grazing under lysogenic viral infection and frequency-dependent 
transmission. 

Numerous papers have been published about pattern formation and chaos in minimal prey- 
predator models of phytoplankton-zooplankton dynamics [25-32]. Different routes to local and 
spatiotemporal chaos [33 41], diffusion- and differential-flow-induced standing and travelling 
waves [26,42 46] as well as target patterns and spiral waves [47,48] have been found. Also, 
the impact of external noise on patchiness and transitions between alternative stable population 
states has been studied [41,49-51]. 

In this paper, we focus on modelling the influence of lysogenic infections and proportionate 
mixing incidence function (frequency-dependent transmission) [52 54] on the local and spatio- 
temporal dynamics of interacting phytoplankton and zooplankton with Holling Type-III grazing, 
i.e., with excitable dynamics. The latter has been introduced by Truscott and Brindley [28] to 
model recurrent phytoplankton blooms. Furthermore, the impact of multiplicative noise [55,56] 
is investigated. 

2. T H E  M A T H E M A T I C A L  M O D E L  

The Truscott-Brindley model [28] for the prey-predator dynamics of phytoplankton P and 
zooplankton Z at time t and location K = {x, y} reads in dimensionless quantities, 

OP a 2 P  2 
a--t- = r P  (1 - P )  1 + b2P 2 Z + d A P ,  (1) 

OZ 

Ot 

a 2 p  2 

1 + b2P 2 Z - m3 Z + d A Z .  (2) 

There is logistic growth of the phytoplankton with intrinsic rate r and Holling-Type III grazing 
with maximum rate a2/b 2 as well as natural mortality of zooplankton with rate m3. The growth 
rate r is scaled as the ratio of local rate rloc and spatial mean (r}. The diffusion coefficient d 
describes eddy diffusion. Therefore, it must be equal for both species. The effects of nutrient 
supply and planktivorous fish are neglected because the focus of this paper is on the influence 
of virally infected phytoplankton. The phytoplankton population P is split into a susceptible 
part X1 and an infected portion X2. Zooplankton is simply renamed to X3. Then, the model 
system reads for symmetric inter- and intraspecific competition of susceptibles and infected, 
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ox~ (< t)  

Ot 
- L [x (< t)] + dAX~ (< t) ,  i = 1,2,3, (3) 

where 

a2X1 (Xl + X2) N i X 2  
f~ = r ~ X ~ ( 1 - X ~ - X 2 ) -  l + b  2 ( X l + X 2 )  2 X 3 - A X I + X 2 '  

a2X2(XI  + X2) v X1X2 
f~ = r2X2 (1 - X 1 - X 2 )  - 1 + b2(X1 + X2) 2 -'~3 + A X1 + X2 

a2(X1 + X2)2 X 

(33) 

rn2X2 , (3b) 

(3c) 

Proport ionate mixing transmission with rate A as well as an additional disease-induced mor- 
tality of infected (virulence) with rate m2 are assumed. The vector of population densities is 
X = {X1, X2, X3}. In the case of lytic infection, the first term on the right-hand side of equa- 
tion (3b) would describe the losses due to natural mortality and competition. Here, lysogenic 
infections with r l  = r2 = r will be considered. The lysogenie replication cycle of viruses is very 
sensitive to environmental variability and may switch to the lytic cycle. This situation is not 
considered here. 

Furthermore, multiplicative noise is introduced in equations (3) in order to s tudy environmental 
fluctuations, i.e., 

ox~ (< t)  

Ot 
- f~ Ix  (< t)] + d ZxX~ (< t) + ~ [X (< t)]. ~ (< t) ,  i =  1,2,3, (4) 

where ~i(r', t) is a spatiotemporal white Gaussian noise, i.e., a random Gaussian field with zero 
mean and delta correlation, 

((i (5", t)) = 0, ((i (r'l, tz) (i (F2, t2)) = 6 (Ki - K2) 6 (h  - t2),  i = 1,2, 3. (4a) 

w~[X(C t)] is the density-dependent noise intensity. The axiom of parentness in population dy- 
namics requires this density dependence, i.e., multiplicative noise. Throughout  this paper, it is 
chosen 

ah [X (~5 t)] -- wXi (% t ) ,  i = 1, 2, 3, w = const. (4b) 

3.  T H E  L O C A L  D Y N A M I C S  

At first, the local dynamics is studied, i.e., it is searched for stat ionary and oscillatory solutions 
of system (3) for d = 0. To do that,  system (3) is simplified through a convenient transformation, 
then describing the dynamics of the total phytoplankton population P = X1 + X2, the prevalence 
i = X 2 / P  and zooplankton X3. With f ( P )  = a2PZ/(1 + b2p2), the model equations read, 

dP 
d--~ : [r l(1 - i) ~- r2i]( l  - P ) P  -- f ( P ) X a  - m2iP, 

di 
d~ = [(r2 - r J ( 1  - P)  + (A - m2)](1 - i)i, 

dXa 
dt  - I f ( P )  - -~3 I X 3  

(5) 
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Figure 1. Local excitability with (a) decline of prevalence for A < m2,  (b) saturation 
of prevalence for A > m2,  and (c) constant prevalence for A = m2,  m 3  = -  0.05. No 
noise in left column. Localized outbreaks in a noisy environment with  w = 0.075, 
right column. 

F o r  d i f f e r e n t  r a t i o s  of  A a n d  m 2 ex i s t  d i f f e r e n t  s t a t i o n a r y  s o l u t i o n s .  I n  o r d e r  t o  c h a r a c t e r i z e  

t h e m ,  t h e  f o l l o w i n g  a d d i t i o n a l  p a r a m e t e r s  a re  i n t r o d u c e d ,  

i s  _ X ~  

and 

w + 
1 + b 2 ( X ~  + X ~ )  2" 
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Figure 2. Local oscillations with (a) decline of prevalence for A < m2, (b) sa tura t ion  
of prevalence for A > m2, and (c) constant  prevalence for A = m2, m3 = 0.09. No 
noise in left column. Noisy oscillations with w = 0.075, right column. 

X ~ ,  k = 1 , 2 , 3 ,  are  the  s t a t i o n a r y  so lu t i ons  of s y s t e m  (3). B o t h  a n a l y t i c a l  a n d  n u m e r i c a l  

i n v e s t i g a t i o n s  yie ld  t h e  fol lowing se lec ted  equ i l i b r i a  for r I = r 2 = r .  

(0) T r iv i a l  s o l u t i o n  X ~  = X ~  = X3 s = 0, i.e., p S  = i s = X3 s = 0, a lways  u n s t a b l e .  

(1) E x t i n c t i o n  of  in fec ted  w i t h  a n d  w i t h o u t  p r eda t i on :  

(a) p S  = X ~  > 0, X ~  = 0, i.e., i s = 0, X ~  = 0, if A < m2 a n d  m3 > m~ r, n o n o s c i l i a t o r y  

s tab le ;  

(b) p S  = X ~  > 0, X s = 0, i.e., i s = 0, X3 s > 0 if A < m2,  n o n o s c i l l a t o r y  or osc i l l a to ry  

m c~ respect ively .  s t ab le  d e p e n d i n g  on  m3 > or < 3 , 
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(2) Extinction of susceptibles with and without predation: 
(a) X s O , P  s x S > o , i . e . , i  s 1, X s 0 i f A > r n 2 a n d r n a >  a ,  . . . .  rn c" nonoscillatory 

stable; 
(b) X1 s = 0, p S  = X2s > 0, i.e., i s = 1, Xa s > 0 if ,k > rn2, nonoseillatory or oscillatory 

stable depending on ma > or < rn~ r, respectively. 

(3) Endemic states with and without predation: 
(a) X~ s > 0 ,  X2 s > 0, i.e., p S  > 0 ,  0 < i  s = i ( 0 )  = c o n s t .  < 1, Xa s = 0 i f A = m 2  and 

rn cT nonoscillatory stable; 
(b) Xi  s > 0, X~ > 0, i.e., p S  > O, 0 < i s = i(0) = const. < 1, Xa s > 0 if A rn2, 

nonoscillatory or oscillatory stable depending on rna > or < rn~ ~, respectively. 

For A < rn2, the infected go extinct (Solutions l a  and lb)  and the prevalence i reaches zero. 
For A > rn2, the susceptibles die out (Solutions 2a and 2b) and the prevalence approaches unity. 
In the case of A = rn2, susceptibles and infected coexist (endemic states 3a and 3b) and the 
prevalence remains constant at its initial value. Moreover, if rna is greater  or less than  rn~ ~, the 

system becomes nonoscillatory or oscillatory stable, respectively. For low values of rna, we observe 
excitation and the following relaxation to the nonoscillatory stable situation. A corresponding 
example is presented in the left column of Figure 1 for r = r l  = r2 = 1 and a = 3.75, b = 10. 
These three parameter  values will be kept for all simulations. In the excitable parameter  range 
with weak external noise, we also observe recurrent outbreaks related to planktonic blooming. 

This is shown in the right column. These stochastic sample runs have qualitatively the same 
outcome as the deterministic computations.  However, one should have in mind that  the latter 
must  only hold for the average of a sufficient number of runs. In a noisy environment,  there are 

only certain probabilities for the survival or extinction of the populations. 
A slight increase of rna yields loss of excitability but oscillations in the system. These are 

drawn in Figures 2. The dynamics of the prevalence remains unchanged what  is a very convenient 
property of system (5). 

One can see that  the t ransformation of the local part  of model (3) to system (5) with rz = r2 = r 
reduces the considerations of deterministic s tat ionari ty and stabili ty to a pseudo-two-dimensional 
problem because the prevalence can take only three values, i.e., zero for A < me, unity for A > rn2 
or its initial value for A - m2. This simplifies the computat ions remarkably. However, for the 
investigation of the spat iotemporal  system with external noise, we proceed with model (3). 

4 .  T H E  S P A T I A L  D Y N A M I C S  

Much has been published about  the spat iotemporal  selforganization in prey-predator  communi- 
ties, modelled by reaction-diffusion (-advection) equations, cf., the references in the introduction. 
Much less is known about  equation-based modelling of the spatial spread of epidemics, a small 
collection of papers includes [57-59]. 

In this section, we consider the spat iotemporal  dynamics of the plankton model (4), i.e., zoo- 
plankton, grazing on susceptible and virally infected phytoplankton,  under the influence of en- 

vironmental  noise and diffusing in horizontally two-dimensional space. The diffusion terms have 
been integrated using the senti-implicit Peaceman-Rachford al ternating direction scheme, cf., [60]. 
For the interactions and the Stratonovich integral of the noise terms, the explicit Euler-Maruyama 

scheme has been applied [61,62]. 
The following series of figures summarizes the results of the spat iotemporal  simulations for 

growth and interaction parameters  from Section 3, but now including diffusion and noise. Periodic 

boundary  conditions have been chosen for all simulations. 
The initial conditions are localized patches in empty  space, and they are the same for determin- 

istic and stochastic simulations. They can be seen in the left column of all following figures. The 
first two rows show the dynamics of the susceptibles for deterministic and stochastic conditions, 
the two middle rows show the infected and the two lower rows the zooplankton. 
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Figure 3. Spatial coexistence of susceptibles (two upper rows), infected (two middle 
rows) and zooplankton (two lower rows) for m2 = A = 0.01, m3 = 0.09. No noise w = 
0 and 0.25 noise intensity, respectively, with equal initial condit ions (left column).  
Periodic boundary  conditions. 
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Figure 4. Spatial  coex i s tence  of infected (two middle  rows) and zoop lankton  (two 
lower rows).  Ext inct ion  of susceptibles  (first row) for m2 = 0.01 <: A -- 0.03, rn 3 ~- 
0.09, and no noise. Very low survival of suscept ibles  for w = 0.25 noise intensity 
(second row). 
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F i g u r e  5. P a r a m e t e r  r a n g e  of d e t e r m i n i s t i c  e x c i t a b l e  s p a t i a l  c o e x i s t e n c e  of  s u s c e p -  
t ib les ,  i n f e c t e d  a n d  z o o p l a n k t o n  for m2  : • --  0.01, m 3  -~ 0.05. W i t h o u t  no i se  
t r a p p i n g  a n d  a l m o s t  e x t i n c t i o n  of i n f e c t e d  in  t h e  c e n t e r  ( t h i r d  row) .  W i t h  w = 0.25 
noise  i n t e n s i t y  n o i s e - e n h a n c e d  s u r v i v a l  a n d  s p r e a d  of i n f e c t e d  ( f o u r t h  row) .  



1044 H. MALCHOW et al. 

In  Figures 3 and  4, there are in i t ia l ly  two patches, one wi th  zoop lank ton  su r rounded  by sus- 

ceptible phy top l ank ton  (upper  par t  of the model  area) and  one wi th  zoop lank ton  sur rounded  by 

infected (on the right of the model  area). For Figures  5, there are centra l  and  concentr ic  patches 

of all three species. 

In Figures  3, one can see the final spat ial  coexistence of all three species for ~ = m2. The  

localized ini t ia l  patches generate  concentr ic  waves tha t  break up after collision and  form spiral 

waves in a de terminis t ic  env i ronment .  The  noise only blurs  these unreal is t ic  pa t te rns .  The  grey 

scale changes from high popu la t ion  densit ies in black colour to vanish ing  densit ies in white. 
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Figure 6. Density plot at t = 550 for the simulation shown in Figure 5. No noise in 
left column, noise intensity w ---- 0.25 in right column, m 2 ---= ~ = 0.01, m3 = 0.05. 
The trapping of infected without noise and their noise-enhanced spread are readily 
seen. Noise-induced local outbreaks due to the excitability of the system can also be 
observed. 
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This changes for/~ ~ m2. Whereas in the deterministic case infected or susceptibles go extinct, 
respectively, the noise enhances their survival and spread under unfavourable conditions. An 
example is given in Figures 4 for A > m2, i.e., the deterministic extinction and noise-induced 

survival and spread of suseeptibles. An example for the opposite case is omit ted here. 
In Figures 5, the deterministic conditions allow for the excitable, nonoscillatory coexistence of 

susceptibles and infected. Susceptibles are initially ahead of infected that  are ahead of zooplank- 
ton. This special initial configuration leads to the propagation of diffusive fronts in rows 1, 3, 
and 5. However, the infected are somehow trapped in the centre and go almost extinct. For the 
stochastic case in rows 2, 4, and 6, the noise enhances the "escape", spread and survival of the 
infected. The opposite case is also possible if the infected are initially ahead of susceptibles. 

In Figures 6, spatial snapshots of all the three populations at t = 550 are provided, without 
noise in the left column and with noise in the right one. The noise-induced enhancement of the 
spread of infected is just as readily seen as the localized noise-induced outbreaks. 

5. C O N C L U S I O N S  

A conceptual biomass-based model of phytoplankton-zooplankton prey-predator dynamics has 
been investigated for temporal, spatial, and spatio-temporal dissipative pat tern formation in a 
deterministic and noisy environment, respectively. It has been assumed that  the phytoplankton 
is partly vitally infected and the virus has a lysogenic replication cycle, i.e., also the infected phy- 
toplankton is still able to reproduce. Holling Type-III zooplankton grazing has been considered 
in order to s tudy the interplay of excitability, infection and noise. 

The equal growth rates of susceptibles and infected have led to the situation that ,  in a non- 
fluctuating environment, the ratio of virulence and transmission rate of the infection controls 
coexistence, survival or extinction of susceptibles and infected, respectively. A fluctuating envi- 
ronment enhances the survival and the spatial spread of the "endangered" species. Furthermore, 
the noise has induced localized outbreaks or bloom phenomena in the parameter  range of ex- 
citability. However, noise has not only supported the spatiotemporal coexistence and spread of 
susceptibles and infected but it has blurred distinct artificial population structures like target 
patterns or spirals and generated more realistic fuzzy patterns. 

Forthcoming work has to include modelling of the transition from lysogenic to lytic viral repli- 
cations, induced by noise with an intensity above a critical threshold, and its impact on recurrent 
phytoplankton outbreaks. Furthermore, different incidence functions and noise characteristics 
and the resulting local and spatiotemporal dynamics of the plankton populations have to be 
considered. 

R E F E R E N C E S  

1. J.A. Fuhrman, Marine viruses and their biogeochemical and ecological effects, Nature 399, 541-548, (1999). 

2. K.E. Wommack and R.R. Colwell, Virioplankton: Viruses in aquatic ecosystems, Microb. Molec. Biol. Rev. 
64 (1), 69-114, (2000). 

3. O. Bergh, K.Y. Borsheim, G. Bra tbak and M. Heldal, High abundance of viruses found in aquatic environ- 
ments, Nature 340, 467-468, (1989). 

4. K. Tarutani,  K. Nagasaki and M. Yamaguchi, Viral impacts on total  abundance and clonal composition of 
the harmful bloom-forming phytoplankton Heterosigma akashiwo, Applied and Environmental Microbiology 
66 (11), 4916 4920, (2000). 

5. C.A. Suttle, A.M. Chan and M.T. Cottrell, Infection of phytoplankton by viruses and reduction of primary 
productivity, Nature 347, 467-469, (1990). 

6. S.W. Wilhehn and C.A. Suttle, Viruses and nutrient  cycles in the sea, Mar. Ecol. Prog. Set. 49 (10), 781-788, 
(199o) 

7. J.L. vanEt ten ,  L.C. Lane and R.H. Meints, Viruses and virus-like particles of eukaryotic algae, Microbiol. 
Rev. 55, 586-620, (1991). 

8. W. Reiser, Viruses and virus-like particles of freshwater and marine eukaryotic a l g a e ~ A  review, Arch. Pro- 
tistenkd. 143, 257-265, (1993). 



1046 H. I~[ALCHOW et al. 

9. C.A. Suttle, A.M. Chan, C. Feng and D.R. Garza, Cyanophages and sunlight: A paradox, In Trends in Mi- 
crobial Ecology, (Edited by R. Guerrero and C. Pedros-Alio), pp. 303-307, Spanish Society for Microbiology, 
Barcelona, (1993). 

10. P. Peduzzi and M.G. Weinbauer, The submicron size fraction of sea water containing high numbers of virus 
particles as bioactive agent in unicellular plankton community successions, J. Plankton. Res. 15, 1375-1386, 
(1993). 

11. S. Jacquet, M. Heldal, D. Iglesias-Rodriguez, A. Larsen, W. Wilson and G. Bratbak,  Flow cytometric analysis 
of an Emiliana huxleyi bloom terminated by viral infection, Aquat.  Microb. Ecol. 27, 111-124, (2002). 

12. M.D. Gastrich, J.A. Leigh-Bell, C.J. Gobler, O.R. Anderson, S.W. Wilhelm and M. Bryan, Viruses as poten- 
tial regulators of regional brown tide blooms caused by the alga, Aureocoecus anophagefferens, Estuaries 27 
(i), 112 119, (2004). 

13. G. Bratbak, M. Levasseur, S. Michand, G. Cantin, E. Fernandez and M. Heldal, Viral activity in relation to 
Emiliania huxleyi blooms: A mechanism of DMSP release?, Mar. Ecol. Progr. Set. 128, 133-142, (1995). 

14. C.P.D. Brussard, R.S. Kempers, A.J. Kop, R. Riegman and M. Heldel, Virus-like particles in a summer bloom 
of Emiliania huxleyi in the North Sea, Aquatic Microbial Ecology 10 (2), 105-113, (1996). 

15. C.A. Suttle and A.M. Chan, Marine cyanophages infecting oceanic and coastal strains of Syneehococcus: 
Abundance,  morphology, cross-infectivity and growth characteristics, Mar. Ecol. Prog. Ser. 92, 99-109, 
(1993). 

16. K. Nagasaki and M. Yamaguchi, Isolation of a virus infectious to the harmful bloom causing microalga 
Heterosigma akashiwo (Raphidophyceae), Aquat. Microbial. Ecol. 13, 135-140, (1997). 

17. R.M. Wilcox and J.A. Fuhrman,  Bacterial viruses in coastal seawater: Lytic ra ther  than  lysogenic production, 
Mar. Ecol. Prog. Set. 114, 35 45, (1994). 

18. S.C. Jiang and J.H. Paul, Significance of lysogcny in the marine environment:  Studies with isolates and a 
model of lysogenic phage production, Microb. Ecol. 35, 235-243, (1998). 

19. L. McDaniel, L.A. Houchin, S.J. Williamson and J.H. Paul, Lysogeny in Synechococcus, Nature 415, 496, 
(2002). 

20. A.C. Ortmann,  J.E. Lawrence and C.A. Suttle, Lysogeny and lytic viral production during a bloom of the 
cyanobacterium Syneehococcus spp, Microb. Ecol. 43, 225-231, (2002). 

21. E. Beltrami and T.O. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. 
Biol. 32, 857-863, (1994). 

22. J. Chat topadhyay and S. Pal, Viral infection on phytoplankton-zooplankton sys tem--A mathematical  model, 
Ecol. Model. 151, 15-28, (2002). 

23. J. Chattopadhyay, R.R. Sarkar and S. Pal, Dynamics of nutr ient-phytoplankton interaction in the  presence 
of viral infection, BioSystems 68, 5-17, (2003). 

24. H. Malchow, F.M. Hilker, S.V. Petrovskii and K. Brauer, Oscillations and waves in a vitally infected plankton 
system. I. The lysogenic stage, Ecol. Complexity 1 (3), 211-223, (2004). 

25. M. Scheffer, Fish and nutr ients  interplay determines algal biomass: A minimal model, OIKOS 62, 271-282, 
(1991). 

26. H. Malehow, Spatio-temporal  pat tern  formation in nonlinear nonequilibrium plankton dynamics, Proe. R. 
Soc. Lond. B 251, 103 109, (1993). 

27. M. Pascual, Diffusion-induced chaos in a spatial predator-prey system, Proc. R. Soc. Lond. B 251, 1-7, 
(1993). 

28. J.E. Truscott and J. Brindley, Ocean plankton populations as excitable media, Bull. Math. Biol. 56,981-998,  
(1994). 

29. H. Malchow, Nonlinear plankton dynamics and pat tern  formation in an ecohydrodynamic model system, 
J. Mar. Syst. 7 (2-4), 193-202, (1996). 

30. H. Malchow, Nonequilibrium spatio-temporal pat terns in models of nonlinear plankton dynamics, Freshwater 
Biology 45, 239-251, (2000). 

31. H. Malchow, S.V. Pctrovskii and A.B. Medvinsky, Pat tern  formation in models of plankton dynamics. A syn- 
thesis, Oceanologica Acta 24 (5), 479-487, (2001). 

32. H. Malchow, A.B. Medvinsky and S.V. Petrovskii, Pat terns  in models of plankton dynamics in a heterogeneous 
environment,  In Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation, 
(Edited by L. Seuront and P.G. Strutton),  pp. 401-410, CRC Press, Boca Raton, FL, (2004). 

33. M. Scheffer, Should we expect strange at t ractors  behind plankton dynamics - -and  if so, should we bother?, 
Journal of Plankton Research 13, 1291-1305, (1991). 

34. Yu.A. Kuznetsov, S. Muratori  and S. Rinaldi, Bifurcations and chaos in a periodic predator-prey model, 
International Journal of Bifurcation and Chaos 2, 117 128, (1992). 



Spatiotemporal  Pat terns  1047 

35. S. Rinaldi, S. Muratori  and Y. Kuznetsov, Multiple attractors,  catastrophes and chaos in seasonally per turbed 
predator-prey communities, Bull. Math. Biol. 55, 15-35, (1993). 

36. J.A. Sherratt ,  M.A. Lewis and A.C. Fowler, Ecological chaos in the wake of invasion, Proe. Natl. Acad. Sei. 
USA 92, 2524-2528, (1995). 

37. M. Scheffer, S. Rinaldi, Yu.A. Kuznetsov and E.H. van Nes, Seasonal dynamics of Daphnia  and algae explained 
as a periodically forced predator-prey system, OIKOS 80, 519 532, (1997). 

38. E. Steffen, H. Malchow and A.B. Medvinsky, Effects of seasonal per turbat ion on a model p lankton community, 
Environmental Modeling and Assessment 2, 43-48, (1997). 

39. S.V. Petrovskii and H. Malchow~ A minimal model of pa t tern  formation in a prey-predator system, Mathl. 
Comput. Modelling 29 (8), 49-64, (1999). 

40. S.V. Petrovskii and H. Malchow, Wave of chaos: New mechanism of pa t tern  formation in spatio-temporal 
population dynamics, Theor. Popul. Biol. 59 (2), 157 174, (2001). 

41. H. Malchow, S.V. Petrovskii and A.B. Medvinsky, Numerical s tudy of plankton-fish dynamics in a spatially 
s tructured and noisy environment, Ecol. Model. 149~ 247-255, (2002). 

42. M. Menzinger and A.B. Rovinsky, The differential flow instabilities, In Chemical Waves and Patterns, Un- 
derstanding Chemical Reactivity, Volume 10, (Edited by R. Kapral and K. Showalter), pp. 365-397, Kluwer, 
Dordrecht, (1995). 

43. H. Malchow~ Motional instabilities in predator-prey systems, J. Theor. Biol. 204, 639-647~ (2000). 

44. R.A. Satnoianu and M. Menzinger, Non-Turing stat ionary pat terns  in flow-distributed oscillators with general 
diffusion and flow rates, Phys. Rev. E 62 (1), 113-119, (2000). 

45. R.A. Satnoianu, M. Menzinger and P.K. Maini, Turing instabilities in general systems, J. Math. Biol. 41, 
493-512, (2000). 

46. H. Malchow, S.V. Petrovskii and F.M. Hilker, Models of spatiotemporal  pa t te rn  formation in plankton 
dynamics, Nova Acta Leopoldina NF 88 (332), 325-340, (2003). 

47. A.B. Medvinsky, D.A. Tikhonov, J. Enderlein and H. Malchow, Fish and plankton interplay determines both  
plankton spatlo-temporal pat tern  formation and fish school walks. A theoretical study, Nonlinear Dynamics, 
Psychology and Life Sciences 4 (2), 135-152, (2000). 

48. A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal  complexity of 
plankton and fish dynamics, SIAM Rev. 44 (3), 311-370, (2002). 

49. J.H. Steele and E.W. Henderson, A simple model for plankton patchiness, Journal of Plankton Research 14, 
1397-1403, (1992). 

50. R.R. Sarkar and J. Chattopadhyay, Occurence of planktonic blooms under environmental  fluctuations and 
its possible control mechanism--Mathemat ica l  models and experimental observations, J. Theor. Biol. 224, 
501-516, (2003). 

51. H. Malchow, F.M. Hilker and S.V. Petrovskii, Noise and productivity dependence of spatiotemporal pattern 
formation in a prey-predator system, Discrete and Continuous Dynamical Systems B 4 (3), 707-713, (2004). 

52. A. Nold, Heterogeneity in disease-transmission modeling, Math. Biosci. 52, 227-240, (1980). 

53. K. Dietz and D. Schenzle, Proportionate mixing models for age-dependent infection transmission, J. Math. 
Biol. 22, 117-120, (1985). 

54. H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?, TREE 16 (6), 
295-300, (2001). 

55. L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology~ p. 385, Pearson Education, 
Upper Saddle River, N J, (2003). 

56. V.S. Anishenko, V.V. Astakov, A.B. Neiman, T.E. Vadivasova and L. Schimansky-Ceier, Nonlinear Dynamics 
of Chaotic and Stochastic Systems. Tutorial and Modern Developments, Springer Series in Synergetics, p. 374, 
Springer, Berlin, (2003). 

57. B.T. Grenfell, O.N. Bj¢rnstad and J. Kappey, Travelling waves and spatial hierarchies in measles epidemics, 
Nature 414, 716-723, (2001). 

58. G. Abramson,  V.M. Kenkre, T.L. Yates and R.R. Parmenter,  Traveling waves of infection in the Hantavirus 
epidemics, Bull. Math. Biol. 65, 519-534, (2003). 

59. V.P. Zhdanov, Propagation of infection and the prey-predator interplay, J. Theor. Biol. 225,489-492,  (2003). 

60. J.W. Thomas,  Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Math- 
ematics, Volume 22, p. 437, Springer, New York, (1995). 

61. P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Math- 
ematic, Volume 23, p. 636, Springer, Berlin, (1999). 



1048 H. MALCHOW et al. 

62. D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, S I A M  
Rev. 43 (3), 525-546, (2001). 


