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Parasites are an integral part of virtually all food webs and species communities. Here we consider the
invasion of a resident predator-prey system by an infectious disease with frequency-dependent
transmission spreading within the predator population. We derive biologically plausible and insightful
quantities (demographic and epizootiological reproduction numbers) that allow us to completely
determine community composition. Successful disease invasion can have two contrary effects in driving
its host population to extinction or in stabilizing predator-prey cycles. Our findings contradict
predictions from previous models suggesting a destabilizing effect of parasites. We show that predator
infection counteracts the paradox of enrichment. In turn, parasite removal from food webs can have
catastrophic effects. We discuss the implications for biological control and resource management on
more than one trophic level.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Infectious diseases can have regulating effects not only on their
host population, but also on other species their host interacts with
(Anderson and May, 1986; Grenfell and Dobson, 1995; Hudson
et al, 2001). Ecologists and epizootiologists alike become
increasingly interested in the structuring effects of parasites and
pathogens within food webs and multiple-species communities
(Dobson and Hudson, 1986; Sait et al., 2000; Holt et al., 2003;
Hudson et al., 2006; Lafferty et al., 2006, 2008). Here we consider
a predator-prey model with an infectious disease circulating in
the predator population. While the effect of parasites and
pathogens in prey populations received a lot of attention,
relatively little is known yet about the consequences of predator
infection—both empirically and theoretically, see the review by
Hatcher et al. (2006).

Parasites and pathogens can be broadly divided into micro-
parasites (viruses, bacteria and protozoa) and macroparasites
(helminths and other metazoan parasites). While microparasites
effectively divide the host into distinct epidemiological classes
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(like susceptible and infective), mathematical models of macro-
parasitic infection need to keep track of the frequency-distribu-
tion of individual macroparasites within the host population.
Transmission of microparasites can occur directly between
definitive hosts (referred to as direct life cycle) or involve one or
more intermediate host species (referred to as indirect cycle), cf.
Dobson (1988).

Existing mathematical models suggest that disease introduc-
tion into the predator population tends to destabilize established
predator-prey communities. This has been observed for micro-
parasites with both direct (Anderson and May, 1986; Xiao and Van
Den Bosch, 2003; Haque and Venturino, 2007) and indirect life
cycles (Dobson, 1988; Fenton and Rands, 2006). Macroparasitic
models generally have a tendency to unstable dynamics, because
they consider the parasite burden in the host in an additional
equation (Anderson and May, 1980; Dobson and Keymer, 1985;
Dobson, 1988).

Here we show that the scenario of destabilization does not
always hold true. The effect of disease introduction can be quite
the opposite, namely to stabilize oscillatory predator-prey
dynamics. We demonstrate this in one of the simplest models
possible, for which we couple the classical Rosenzweig-Mac-
Arthur (1963) predator-prey model with a general SI (susceptible
— infective) model for microparasites with direct life cycles. Our
model thus brings together the two fields of ecology and
epidemiology, as it extends classical epidemiological approaches
(usually assuming constant host population sizes) by demography
(varying population sizes) and ecological interactions (predation).
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Previous papers have predominantly focused on models with
(i) a linear functional response of predators and (ii) density-
dependent disease transmission (Dobson and Keymer, 1985;
Anderson and May, 1986; Dobson, 1988; Lafferty, 1992; Han
et al,, 2001; Venturino, 1994, 2002; Xiao and Van Den Bosch,
2003). These are strongly simplifying assumptions. First, the
feeding rate of predators usually saturates (e.g. Turchin, 2003).
The only studies considering more realistic saturating functional
responses so far are by Hadeler and Freedman (1989), Freedman
(1990), Fenton and Rands (2006) (using Holling type II) and Haque
and Venturino (2007) (using ratio-dependence). The paper by
Hadeler and Freedman (1989) is particularly interesting as it
explicitly studies the case of an oscillating resident predator-prey
community. Upon disease invasion, the amplitude of the oscilla-
tion increases, indicating further destabilization. The other
models do not consider the case of an oscillating resident
predator-prey system or the disease-free model does not oscillate
due to other modeling assumptions (Kribs-Zaleta, 2006).

Oscillating resident communities are particularly worthwhile
to study, because prey-predator (or host-parasitoid, plant-herbi-
vore, consumer-resource) systems are well-known examples of
inherently fluctuating populations (e.g. Turchin, 2003). They
represent interesting and relevant scenarios in biological control
and resource management, because recurrent outbreaks in both
terrestrial and aquatic ecosystems pose central problems in
ecology (e.g. insect outbreaks and algal blooms, see Anderson
and May, 1980; Hallegraeff, 1993; Dwyer et al., 2004; Hilker and
Malchow, 2006). Oscillations are also a concern of biological
conservation, because populations could reach such small abun-
dances that they are likely to go extinct (e.g. Rosenzweig, 1971).

Second, density-dependent transmission assumes that the
number of contacts between individuals increases linearly with
host abundance, i.e. the population is well-mixed and each
individual has the same probability of contact with any other
individual. While this is the classical ‘mass-action’ assumption
(Keeling, 2005) and has been demonstrated to hold for a number
of diseases (e.g. Caley and Ramsey, 2001; Ramsey et al., 2002;
Brown and Brown, 2004), sexually transmitted diseases (e.g.
Thrall et al., 1993) or infections in populations with territorial or
social behavior (e.g. Altizer et al., 2003) are clear examples
suggesting frequency-dependent transmission, where the number
of contacts between predators is independent of population size
and remains constant. For instance, frequency-dependent trans-
mission has been suggested for models of feline retroviruses in
domestic cats (Courchamp et al., 1995; Fromont et al., 1998),
phocine distemper virus in seals (Diekmann et al., 1995), cowpox
virus in mixed populations of free-living rodents (Begon et al.,
1999) and brucellosis in bisons (Dobson and Meagher, 1996).
McCallum et al. (2001) and Begon et al. (2002) discuss the
differences between frequency- and density-dependent transmis-
sion as well as other infection rates in more detail.

A key quantity in our analysis will be the demographic and
epizootiological reproduction number. It can be defined as the
expected number of offspring a typical individual produces in its
life or, in epizootiology, as the expected number of secondary
infections produced by a single infective individual in a com-
pletely susceptible population during its entire infectious period.
While the concept of reproduction numbers was initially devel-
oped in demography already in the early 20th century (e.g. Lotka,
1925), they became a standard tool in epidemiology since the
work of Anderson and May (1991) and Diekmann et al. (1990),
cf. the review by Heesterbeek (2002). We will use reproduction
numbers as helpful tools in determining the persistence (if they
are larger than one) or extinction (if they are smaller than one)
of a species. This will allow us to categorize the community
composition of prey, predators and disease. The threshold concept

inherent in reproduction numbers has been used in previous
studies of eco-epidemiological models (e.g. Hadeler and Freed-
man, 1989; Han et al., 2001; Xiao and Chen, 2001; Hethcote et al.,
2004). However, to our knowledge, this study is one of the first
that bases the entire community classification completely on
reproduction numbers and that also attributes biological meaning
to all of these quantities.

This paper is organized as follows. The next section introduces
the model with a saturating functional response and frequency-
dependent disease transmission. In Section 3, we define the
reproduction numbers that can completely explain the resulting
community structure. Section 4 investigates parasite establish-
ment in a resident predator-prey community in more detail
numerically. This is where we observe disease-induced stabiliza-
tion. Finally, we discuss our model and results, in particular the
mechanisms favoring stabilization, and draw conclusions relevant
for disease and community ecology.

2. Model description and assumptions
The model structure is shown in the transfer diagram of

Fig. 1. The underlying predator-prey model is the classical
Rosenzweig-MacArthur (1963) model:

dx X aX
ar (1 -%) -aix (1)
- N
ffrezhar::e growth predation
dy aX
a = Cmix’ < )
v ——~—natural mortality

predators rate
of change

conversion of
prey consumed

The logistically growing prey population X has an intrinsic per-
capita growth rate b and a carrying capacity K. The functional
response of predators is of Holling type II with a maximum
consumption rate a, the half-saturation constant is H and the
conversion efficiency is e. The predators Y have a linear death rate
with per-capita mortality d. Considering the spread of an
infectious disease within the predator population, we assume
that the total predator population Y =S +1 can be split into a
susceptible and an infective part. That is, there is no recovery from
the disease. Then we obtain two differential equations for the
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Fig. 1. Transfer diagram of model (5)-(7) in terms of susceptible and infective
predators and the prey.
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single equation (2):

ds aX SI
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Infective predators suffer an additional disease-related mortality
(virulence) .. Transmission takes place directly between infective
and susceptible predators, i.e. we consider a microparasite with
direct life cycle. The incidence (new cases per unit time) is assumed
to be frequency-dependent with transmission coefficient .

Our model is now described by the three equations (1), (3) and
(4). Let us rewrite the equations for S and I in Y and i variables with
i being the prevalence i=1/(S+1), i.e. the fraction of the host
population being infective. This has two advantages. First, it
removes the singularity in the disease transmission terms for
S+ 1= 0. Second, in the case of host population extinction (Y = 0),
it allows to distinguish between ecological (e.g. too high predator
mortality) and epidemiological factors (i.e. disease-induced extinc-
tion) as underlying mechanisms. In the process of vanishing host
population size, the prevalence becomes zero in the former case,
while the prevalence remains strictly positive in the latter case.
This reflects that disease transmission is ongoing even in small
populations (cf. Hethcote, 2000; de Castro and Bolker, 2005a).

The model equations can be simplified by introducing
dimensionless variables. Choosing N = X/K for the prey popula-
tion, P = Y/(eK) for the predator population and t = eaT for time,
we reduce the number of parameters from seven to five, namely

T ea’ K’ “ea’
o o

P=ea "=ea
which are all positive. We thus arrive at the dimensionless model
dN NP
E:rN(l—N)—h_’_—N, (5)
dP NP .
E:m—mP—uPl, (6)
di . N 1.
= (ﬁ—#)(l—l)—m L (7)

which is formulated in terms of the prey population, total
predator population and disease prevalence within the predators.
This is the model we will analyze in the following sections.

Table 1
Community composition and the stability of equilibria (N*, P*,i*)

3. Community composition: disease and predator
reproduction numbers

This section deals with the community composition of model
system (5)—(7). It can be completely explained by four threshold
quantities that are demographic and epizootiological reproduc-
tion numbers. Note that it can also be obtained independently by
a mathematical stability analysis (see Appendix A). We will show
that the asymptotic long-term behavior, which is determined by
stable equilibria E = (N*, P*,i*), can be retrieved by biologically
plausible reproduction numbers.

We start by considering a resident predator-prey community
without disease. A necessary condition for these two species to
coexist is that the predators have a positive net growth rate. We
can formulate this in terms of the disease-free demographic
reproduction number

IJ 1
Ro= (h+Dm (8)
that gives the expected number of offspring (1/(h+ 1)) of an
average predator individual in its lifetime (1/m). It is based upon
the assumptions that the prey are at carrying capacity (N = 1) and
the disease is absent (i = 0). Clearly, if Rg>1, the predators can
sustain itself on the prey (second column in Table 1). As in the
Rosenzweig—MacArthur model, the disease-free coexistence state
E, = (N}, P}, 0) can be either stable or unstable and surrounded by
a limit cycle.

Regarding disease dynamics, we consider the case f>u
throughout this paper. Otherwise the prevalence declines to
zero monotonically, cf. Eq. (7), and we are left with the
disease-free predator-prey subsystem. The condition for
successful disease invasion of the resident predator-prey com-
munity can be expressed by the epizootiological reproduction
number

a2 _ B
Ro =mia (9)

Ao can be defined as the average number of secondary cases (f3)
due to a single infective individual introduced into a completely
susceptible host population during its infectious period
(1/(m + ). If Z9>1, all three species (prey-predator-disease)
can coexist (third column in Table 1). Numerical simulations
shown in the following section indicate that the enzootic
coexistence state Es = (Ni,P%, i) is either stable or unstable and
surrounded by sustained limit cycle oscillations.

If the disease causes too many deaths in its host population,
however, the predators will go extinct. The corresponding quantity

RG>1 RP<1

Zo<1 PRo>1,R0>1 Ro>1,R0 <1 Zi<1 %i>1
E; =(1,0,0) Unstable Unstable Unstable Stable Unstable
E; =(1,0,i%) - -/Unstable Stable - Stable
E; = (N,P;,0) Stable/cyclic Unstable Unstable - -
Es = (N3, P%,i5) - Stable/cyclic - - -

Prey-predator Prey—-predator-disease Prey only

Rg and Rf are the demographic reproduction numbers of the disease-free and infective predator population, respectively. % is the epizootiological reproduction number of
the disease. 2 is the reproduction number of the disease prevalence within the predator population and can be substituted by % /R’ Details of the stationary states are in
Appendix A. ‘-’ indicates that an equilibrium does not exist or is unfeasible. ‘Cyclic’ means that an equilibrium is unstable and surrounded by a limit cycle. The equilibria

Ey =(0,0,0) and E, = (0,0, 1) are always unstable and therefore omitted.



302 EM. Hilker, K. Schmitz / Journal of Theoretical Biology 255 (2008) 299-306

is the predators’ enzootic demographic reproduction number

p 1 B
8= Dom i)~ (B e 1) (o)
that takes into account the additional mortality rate u for the
infective part of the population (i%). The subscript of R’ now labels
the assumption of the predators being subject to enzootic infection.
If Rf <1, the predators go extinct with only the prey population
remaining and reaching carrying capacity, see the stationary state
E; = (1,0,i3) and the fourth column in Table 1. This disease-
induced extinction is one of the two mechanisms leading to a
vanishing predator population. The other one is realized if the
predators are not able to establish themselves (Rg<1, two right
columns in Table 1). In this situation we can distinguish between
two cases. In the first one (#;<1), the disease goes extinct before
the predators do. In the second one (%;> 1), the disease remains
prevalent in the vanishing predator population. The former and the
latter correspond to the stationary states E; =(1,0,0) and
E; = (1,0,i3), respectively. Which one of these will be attained
depends on the threshold quantity
7
= (ot 1 =20, (1)
1

This gives the number of secondary infections discounted by the
fact that the host population size is changing (cf. Thieme, 1992).
Consider the following: if the prevalence is small compared to the
predator population size, the infective part of the population
decays at an approximate exponential rate f — m — u (see Eq. (4)),
whereas the total population size decays approximately at rate
1/(h+1)—m (see Eq. (6)). The difference between these two
exponential rates defines the value of #; and basically determines
if disease prevalence will grow in small predator populations
(%;>1) or decay (Z;<1). As #; can also be obtained directly from
Eq. (7) for the prevalence, we refer to it as the prevalence
reproduction number.

Note that %; can also be written as the ratio of the
reproduction numbers of infectives (%,) and the total host
population in the presence of disease (R!), cf. Eq. (11). We can
therefore base our classification on three rather than four
pertinent thresholds.

The entire community composition, i.e. persistence of (i) prey
alone, (ii) prey and predator or (iii) prey, predator and disease, can
be predicted by biologically meaningful reproduction numbers.
The prey can always grow and survive. Hence, the stationary
states Eg =(0,0,0) and E, =(0,0,1) are always unstable. The
classification by the reproduction numbers thus coincides with
the results from linear stability analysis, as shown in Table 1.

4. Disease-induced stabilization of predator-prey oscillations:
numerical simulations

The subject of this section is the nonlinear aspect involved in
the invasion of a resident predator-prey community by a
pathogen. First, we will use numerical bifurcation analysis and
simulations to show how disease stabilizes predator-prey
oscillations. Next, we will give an intuitive explanation of this
stabilizing effect. Finally, we will summarize the dynamical
behavior to be expected for different disease characteristics.

Fig. 2 illustrates how community dynamics changes with
varying transmissibility. We assume that predators are strong
enough to exist on the prey in the disease-free system, i.e. RS >1.
For <0.9, equivalently Z,<1, the disease cannot establish
within the resident predator-prey system. The resulting dynamics
are large-amplitude oscillations of predators and prey,
i.e. E4 = (N},P},,0) is unstable and surrounded by a limit cycle.

a

— . i : _
prey- i
: prey-predator-disease i prey

predator

0.8 r

0.6

prey, N

04 RN

- Stabilization
Se (Hopf bifurcation)

0.7 ===, :
0.6 | . 1
05 . 1
04 | y .

03 B ," L[] 1

predator, P

02 / J

0.1 +/ . i

0.9 T T T T T

0.7

0.6

04 r

prevalence, i

02 r

transmissibility, 3

Fig. 2. Disease invasion and stabilization of a cyclic predator-prey community.
Solid (dashed) lines represent stable (unstable) equilibria. Circles indicate the
maximum and minimum amplitudes of limit cycle oscillations. Unstable (semi-)
trivial equilibria are not shown for the sake of clarity. Parameter values: r =1,
h=02 m=05 u=04.

As the predator-prey subsystem does not depend on disease
parameters, the cycle as well as the corresponding stationary state
remain constant for all transmissibility values in this range.
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Upon disease establishment (%, > 1), the two-species cycle in
the predator-prey subsystem becomes a three-species cycle of
enzootic coexistence. The amplitudes of the cycles shrink with
increasing transmissibility, and the oscillations eventually stabi-
lize if By ~ 1.669 is passed. Mathematically, this corresponds to a
backward Hopf bifurcation: the enzootic stationary state Es =
(N%, Pz, i5) that is unstable for f<f; gains local stability and the
surrounding limit cycle attractor disappears. Hence, all three
species are now in stable equilibrium. Increasing prevalence
(larger f) continues to depress the host population size and
ultimately drives it to extinction from f = 5.4 on (equivalently,
RP <1). Without predators, the prey grow to carrying capacity.

To understand why the predator-prey oscillations get stabi-
lized by the disease, it is instructive to consider the nullplanes of
system (5)-(7) in three-dimensional state space (Fig. 3). Fixing the
prevalence at i =0, we obtain a projection in the disease-free
predator-prey system with a single-humped prey nullcline and a
vertical predator nullcline. It is well-known that the predator
nullcline being on the right-hand side from the hump results in a
stable equilibrium (Rosenzweig, 1971). In the top of the hump a
Hopf bifurcation occurs. Enriching the prey population by
increasing the carrying capacity changes the shape and height of
the prey nullcline and moves its peak to the right, i.e. the predator
nullcline may be left from the peak. This destabilizes the
equilibrium and generates limit cycles with increasing amplitude
(paradox of enrichment, Rosenzweig, 1971). Fig. 3 illustrates a
large-amplitude cycle in the predator-prey subplane.

Increasing the predator mortality shifts the vertical predator
nullcline towards the right-hand side (e.g. Case, 2000). Its impact
is therefore stabilizing. Disease invasion in the predator popula-
tion has a similar effect, as infection induces additional mortality
in the predators and thus effectively increases their mortality. The
sum of natural and disease-induced per-capita mortality could be
replaced by a total mortality

m(i) = m + pi. (12)

Fig. 3. Disease prevalence bends the predator nullplane towards the right-hand
side and back over the hump of the prey nullplane (dashed line), thus
counteracting the paradox of enrichment. Solid lines are two example trajectories
of the disease-free subsystem showing limit cycle oscillations and the enzootic
three-species system showing damped oscillations. Parameter values as in Fig. 2
with = 2.

Solving for the predator nullplane (by setting the right-hand
side of Eq. (6) equal to zero),
h(m + pi) hm(i)
= ~ = —~—, 1
1—-m+pu) 1-—m(@) (13)

one can clearly see the impact of invading disease. The prey
population increases with disease prevalence in the predators.
This eventually pushes the equilibrium point back over the hump
(shown by the dashed line) into the region where predator-prey
dynamics are stable. An example is given in Fig. 3, where the
disease moves the intersection of all three nullplanes right from
the hump. The trajectory spirals towards a stable equilibrium,
i.e. the disease damps the oscillations inherent in the predator-
prey dynamics. Note that the expression in (13) is always positive
(i.e. m(i)<1, which is guaranteed by R} > 1< m(i)<1/(h + 1)).

The disease-induced mortality depends on the prevalence and
is therefore a dynamic variable, cf. Eq. (12). In fact, the disease-
related mortality does not completely bear analogy with the
natural mortality. Numerical simulations indicate that the
predator nullcline projection actually needs to be shifted a bit
further than just right from the hump. This is because the system
with disease is three-dimensional.

Finally, let us consider how the composition and stability of the
prey-predator-disease community change when varying not only
transmissibility f, but also virulence p. This is illustrated in the
two-parameter bifurcation diagram in Fig. 4. Note that  and p are
the only disease-related parameters. That is, Fig. 4 could help
answering important questions in biological control: Which kind
of virus should be introduced, in order to yield a certain behavior?

The dashed line in Fig. 4 corresponds to %o = 1. It delineates
the parameter region of disease-free dynamics and indicates the
establishment of the disease. In our case, the two-species limit
cycle in the predator-prey subsystem bifurcates into the interior
of the three-species state space and becomes an enzootic cycle.
The bold line is the Hopf bifurcation line, corresponding to the
limit cycle disappearance and gain of stability for the enzootic
coexistence state (disease-induced stabilization). The dotted/solid
line corresponds to R = 1. That is, disease-induced extinction
takes place when the enzootic equilibrium disappears in a
transcritical bifurcation and exchanges stability with the
disease-induced extinction state. Note that the one-parameter

T T T T T

25 1

2 / ]

Predator—prey cycles Y
(disease free)

=5

g 15 ¢ E
=
2
=
B
>

I+ / Disease—induced 1

/ predator extinction
/
05 / 1
/ Disease—induced stabilization
/
Disease establishment (enzootic cycles)
0 1 1 1 1 1 1
0 1 2 3 4 5 6

transmissibility, B

Fig. 4. Community composition and stability in the pathogen-related parameter
plane (f, ). The bold line indicates the stabilization of limit cycle oscillations. It is
obtained by a two-parameter continuation of the Hopf bifurcation. The dashed and
dotted/solid line correspond to %o =1 and Rf , respectively. Other parameter
values as in Fig. 2.
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bifurcation diagram in Fig. 2 can be retrieved from the two-
parameter bifurcation diagram when fixing y = 0.4.

Fig. 4 shows that disease-induced stabilization as well as
disease-induced extinction are nested within the parameter
region where the disease can establish (#,>1). They can there-
fore be seen as more ‘extreme’ events in the case of successful
parasite invasion. Both scenarios require certain minimum values
for the transmissibility as well as for the virulence. In the case of
disease-induced stabilization, in which we are interested here,
this can be easily understood. First of all, the transmissibility
needs to be high enough to ensure a large enough prevalence that
shifts the predator nullcline across the hump (cf. Fig. 3). Similarly,
the virulence is required to be high enough, in order to sufficiently
increase host mortality. In particular, there is a minimum
virulence level u,,;, ~ 0.19, below which disease-induced stabili-
zation cannot take place—even for high transmissibilities.
Stabilization is most likely to occur in parameter regions with
low/intermediate virulences p> ., and intermediate or high
transmissibilities (e.g. parameter region around the label ‘disease-
induced stabilization’ in Fig. 4).

5. Discussion and conclusions

Nonlinear interactions between predators and prey are well-
known to generate endogenous oscillations. We have shown, to
our knowledge for the first time, that these fluctuations can be
stabilized by an infectious disease spreading within the predator
population. This challenges the current view of destabilizing
disease impacts (Dobson and Keymer, 1985; Anderson and May,
1986; Dobson, 1988; Hadeler and Freedman, 1989; Xiao and Van
Den Bosch, 2003; Fenton and Rands, 2006; Haque and Venturino,
2007), which also similarly exists for disease infecting prey
populations (e.g. Anderson and May, 1986; Beltrami and Carroll,
1994; Hall et al., 2005; Hilker and Malchow, 2006; Roy and Holt,
2008). Moreover, our results appear to contradict the observation
of de Castro and Bolker (2005b) that parasite-induced cycles are
more likely to occur in larger communities.

Our findings are also of relevance for biological control, as
infectious diseases can be used as control agents of undesirable
species such as biological invaders. This study interestingly
suggests that parasites can have regulating effects on more than
one trophic level and be utilized for management purposes in
multi-species systems. The introduction of disease cannot only
control or eradicate the predator, but also allow the prey species
to recover. For example, pathogens could potentially be used to
control mammal pest species such as feral domestic cats
(predators) on oceanic islands that have devastating impacts on
native prey species (e.g. sea birds), cf. Courchamp and Sugihara
(1999), Courchamp et al. (2003) and Nogales et al. (2004).

What is the stabilizing mechanism in our model? The effect of
the disease is solely to increase predator mortality, which
decreases predator population size and the predation pressure
on the prey. This, in turn, increases prey population size and the
density dependence felt by the prey population, which is a
stabilizing factor. Infection thus indirectly couples predator
mortality with prey population size. A similar inhibition of the
predator population by high densities of the prey occurs in the
presence of toxic prey species (Roy and Chattopadhyay, 2007) or
can be achieved by vertical migration of zooplankton (Morozov et
al,, 2007). A qualitatively very similar shift of the predator
nullplane as in Fig. 3 emerges if the predators have their own
(top-)predators, cf. figure 1 in Rosenzweig and MacArthur (1963)
and figure 2 in Oksanen et al. (1981). (In other models, top-
predators can also further destabilize the dynamics, e.g. Hastings
and Powell, 1991; Rinaldi and De Feo, 1999.) These forms of

indirect predator density dependence have in fact been discussed
as a stabilizing mechanism (Abrams and Walters, 1996), in
particular when the functional response of the top-predator is
linear (Abrams and Roth, 1994). Note that the impact of disease
prevalence on the predator mortality is linear, too, although the
situation in our model is more complex as the prevalence is also
coupled with the prey population.

Disease transmission in our model is frequency-dependent.
This is known to be stabilizing in single-species models with
exponential (Busenberg and van den Driessche, 1990) and logistic
growth (Zhou and Hethcote, 1994) as well as an Allee effect
(Hilker et al., 2007). Since the stabilization takes place for a large
enough prevalence (Fig. 3) or transmissibility (Fig. 2), this
provides another intuitive explanation of the stabilization ob-
served, namely a prevailing impact of the (stabilizing) disease
over the (oscillatory) predator-prey dynamics.

Density-dependent disease transmission, in contrast, appears
to have a more destabilizing influence (e.g. Hilker et al., accepted
for publication). The difference between these two transmission
modes is that the per-capita contact rate of individuals increases
linearly with population size (density-dependent) or remains
constant (frequency-dependent). As a consequence, the number of
secondary infections in our model is constant and % does not
depend on predator population size. Hence, there is no critical
community size (e.g. Anderson et al., 1981) that is necessary for
disease establishment. If there were such a condition, disease
invasion in a fluctuating population would vary periodically,
cf. Anderson et al. (1981, section 13) and Hadeler and Freedman
(1989).

The stabilizing impact of disease invasion does not seem to be
restricted to frequency-dependent transmission. Numerical simu-
lations indicate that density-dependent infection can stabilize
predator-prey oscillations as well. However, the dynamics
appears to be more complicated (involving bistability and
unstable limit cycles due to a subcritical Hopf bifurcation) and
will be described in more detail elsewhere. Considering that
virulent infectious diseases increase predator mortality, we expect
stabilization by disease invasion to be a rather common
phenomenon in the Rosenzweig—-MacArthur model independent
of the transmission mode (e.g. frequency- or density-dependent or
something else). The prevalence of disease simply needs to be
large enough to sufficiently increase the total predator mortality,
cf. Eq. (12).

Fig. 2 shows a moderate increase in the amplitudes of
predator-prey oscillations just after disease invasion (% slightly
larger than 1). This effect also occurs for different parameter sets.
Adding parasites as a third species to an established community
could be expected to result in more complex rather than stabilized
dynamics. For instance, infective predators can be regarded as
another trophic level depressing susceptible predators and
feeding upon the prey, which is similar to an intraguild predation
food web. Theory predicts contrasting effects of the omnivory link
established by the top-predator/disease. On the one hand, it can
destabilize positive equilibria in communities with linear func-
tional responses (Holt and Polis, 1997) and even lead to chaos
(Tanabe and Namba, 2005). On the other hand, omnivory tends to
have a stabilizing effect on communities with saturating func-
tional responses (McCann and Hastings, 1997). We have not
observed any cases in which infection might possibly induce more
complex dynamics like chaos, but we have not performed
systematic simulations nor considered the case in which disease
might possibly destabilize stable predator-prey dynamics.

The paradox of enrichment continues to puzzle both theore-
tical and experimental ecologists (e.g. Luckinbill, 1974; McCauley
and Murdoch, 1990; Tilman and Wedin, 1991; Myerscough et al.,
1996; Kirk, 1998; McCauley et al., 1999). Our findings suggest that
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the additional predator mortality induced by infectious diseases
has a stabilizing impact and counteracts the paradox of enrich-
ment. This can be nicely explained in the phase plane projections,
because the predator nullcline is shifted towards the stable region.
However, it retains its constant vertical shape. Hence, enrichment
will still destabilize the system.

Although disease introduction in our model does not ‘reverse’
the paradox of enrichment, it offers another potential explanation
for why natural populations tend to be stable. Many species have a
plethora of parasites and pathogens, making it possible that
inherently cyclic behavior can be stabilized. In practice, however,
it will be difficult to distinguish whether a particular system is
stabilized due to disease or any other factor. Therefore, any
metrics that allow to identify disease as the causing mechanism
would be helpful.

Emerging and re-emerging infectious diseases and their
invasion of resident species communities are pervasive. This
study provides insightful ecological and epidemiological repro-
duction numbers for understanding how parasites structure
community composition. All quantities are biologically plausible
and could, in principle, also be measured from the field. Moreover,
this study indicates that two very different outcomes are possible
upon disease introduction: (1) the host population can either be
driven to extinction or (2) an otherwise unstable resident
community can be stabilized. Adding or removing parasites from
food webs might therefore have unexpected and dramatic
consequences, possibly leading to extinctions or outbreaks on
more than one trophic level. This highlights the importance of
including infectious disease agents in food webs, which has begun
to be recognized only recently (Lafferty et al., 2008).

Acknowledgements

The authors thank H. Freedman, G. Gomes, N. Oliveira, M. Sieber,
E. Venturino, C. Kribs-Zaleta and two anonymous reviewers for
their comments on this paper and earlier versions of it. FMH is an
Alberta Ingenuity and Honorary Killam Fellow. KS acknowledges
partial travel support from the Universitdtsgesellschaft Osnabriick.
This work has been supported in part by the European Commission,
Grant MEXT-CT-2004-14338.

Appendix A. Existence and stability of stationary states: linear
stability analysis

System (5)-(7) has the following six equilibria E; = (Nj, P, i),
j=0,...,5.

0. Eg = (0,0,0). The trivial extinction state is always a saddle
point. The eigenvalues are

/l] =r>0,
/lz =-m<0,
/13 :[i’—u

1. E; = (1,0,0) with eigenvalues
I :h]ﬁ_mgo if RO,
/12 = —-r<0,

/l3=[))7,l17h]?§0 lf,@l§1

The disease-free prey-only state is stable if the predators are
too weak to establish (RS <1) and the disease does not have the
potential to drive the predators to extinction (#;<1). Other-
wise E; is a saddle point.

2. E; =(0,0,1). The trivial extinction state due to disease is
always a saddle point with eigenvalues

j-l =r>0,
Ay = - —m<0,
73 =—(f — v

3. E3=(1,0,i3) with i3 =1-1/(f — w(h+ 1) = (%; — 1)/ R;. The
disease-induced extinction state exists only for ;> 1, in which
case the disease-free prey-only state is unstable. The eigenva-
lues are

ﬂ1=—T<O,
L (i1
2= p >

1 e
A3 Zm—(ﬁ_ﬂ)§0 if #;=1.

>§0 if RP<1,

Hence, Ej3 is stable if Rf<1 and a saddle point otherwise.

4. E4 = (Ny, P;,0) with Ny =mh/(1 — m)and P; =rh(1 — m(h + 1))/
(1 —m)? =rh/(1 —m)* (RS — 1)/R5. The predator-prey coexis-
tence state in the disease-free subsystem exists if Rj>1. The
eigenvalues are

A2 =1 £/co(-1),

/’{3:‘8—/,1,—m§0 ife%ogl.

P9 <1 is a necessary condition for stability of E4. If Z9<1 holds
true, the disease vanishes and we have the same situation as
in the predator-prey system: a pair of complex conjugate
eigenvalues determined by parameter combinations ¢; and c;
that depend solely on the ecological parameters r,h and m.
5. Es = (N%, P, iz) with

Nt — _(B—wm+h

YT R-B-wm+w’
pr B B—mm+ i+ 1) _ rhp? RF -1

5 =rhp 2 2 P

[B— (B — w(m + ] B-B-wm+w)* R

and

i*_ﬂ—m—u_%)—]

5T B T R

The enzootic coexistence state exists if both %o >1 and R > 1.
Its stability is investigated by means of continuation analysis
and numerical simulations in Section 4.

Table 1 summarizes the existence and linear stability conditions
of the stationary states. There is one special case that occurs only
for the particular parameter combination § = . In this case Eg =
(0,0,ig) with ig € (0,1) is a continuum of stationary states. These
equilibria are unstable saddle points, i.e. their eigenvalues are
A =1>0, Jp = —m — uig<0, A3 = (f — w)(1 — 2ig). As the para-
meter condition is unlikely to be met exactly in nature, this special
case is not considered in the main text.
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