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Abstract

If pathogen species, strains, or clones do not interact, intuition suggests the proportion of

coinfected hosts should be the product of the individual prevalences. Independence conse-

quently underpins the wide range of methods for detecting pathogen interactions from

cross-sectional survey data. However, the very simplest of epidemiological models chal-

lenge the underlying assumption of statistical independence. Even if pathogens do not inter-

act, death of coinfected hosts causes net prevalences of individual pathogens to decrease

simultaneously. The induced positive correlation between prevalences means the propor-

tion of coinfected hosts is expected to be higher than multiplication would suggest. By

modelling the dynamics of multiple noninteracting pathogens causing chronic infections, we

develop a pair of novel tests of interaction that properly account for nonindependence

between pathogens causing lifelong infection. Our tests allow us to reinterpret data from

previous studies including pathogens of humans, plants, and animals. Our work demon-

strates how methods to identify interactions between pathogens can be updated using sim-

ple epidemic models.

Introduction

It is increasingly recognised that infections often involve multiple pathogen species or strains/

clones of the same species [1, 2]. Infection by one pathogen can affect susceptibility to subse-

quent infection by others [3, 4]. Coinfection can also affect the severity and/or duration of
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infection, as well as the extent of symptoms and the level of infectiousness [5]. Antagonistic,

neutral, and facilitative interactions are possible [6, 7]. Coinfection therefore potentially has

significant epidemiological, clinical, and evolutionary implications [8–10].

However, detecting and quantifying biological interactions between pathogens is notoriously

challenging [11, 12]. In pathogens of some host taxa, most notably plant pathogens, biological

interactions can be quantified by direct experimentation [13]. However, often ethical consider-

ations mean this is impossible, and so any signal of interaction must be extracted from popula-

tion-scale data. Analysis of longitudinal data remains the gold standard [14], although the

associated methods are not infallible [15]. However, collecting longitudinal data requires a dedi-

cated and intensive sampling campaign, meaning in practice cross-sectional data are often all

that are available. Methods for cross-sectional data typically concentrate on identifying devia-

tion from statistical independence, using standard methods such as χ2 tests or log-linear model-

ling to test whether the observed probability of coinfection differs from the product of the

prevalences of the individual pathogens [16–26]. Detecting such a nonrandom statistical associ-

ation between pathogens is then taken to signal a biological interaction. The underlying mecha-

nism can range, for example, from individual-scale direct effects on within-host pathogen

dynamics [13, 27], to indirect within-host immune-mediated interactions [28], to indirect pop-

ulation-scale ‘ecological interference’ caused by competition for susceptible hosts [29, 30].

A well-known difficulty is that factors other than biological interactions between pathogens

can drive statistical associations. For instance, host heterogeneity—that some hosts are simply

more likely than others to become infected—can generate positive statistical associations, since

coinfection is more common in the most vulnerable hosts. Heterogeneity in host age can also gen-

erate statistical associations, as infections accumulate in older individuals [31–33]. Methods aimed

at disentangling such confounding factors have been developed but show mixed results in detect-

ing biological interactions [34–37]. Methods using dynamic epidemiological models to track coin-

fections are also emerging, although more often than not requiring longitudinal data [38–42].

More fundamentally, however, the underpinning and long-standing assumption that nonin-

teraction implies statistical independence [43, 44] has not been challenged. Here, we confront the

intuition that biological interactions can be detected via statistical associations, demonstrating

how simple epidemiological models can change the way we think about biological interactions.

In particular, we show that noninteracting pathogens should not be expected to have prevalences

that are statistically independent. Coinfection by noninteracting pathogens is more probable than

multiplication would suggest, invalidating any test invoking statistical independence.

The paper is organised as follows. First, we use a simple epidemiological model to show that

the probability that a host is coinfected by both of a pair of noninteracting pathogens is greater

than the product of the net prevalences of the individual pathogens. Second, we extend this

result to an arbitrary number of noninteracting pathogens. This allows us to construct a novel

test for biological interaction, based on testing the extent to which coinfection data can be

explained by our epidemiological models in which pathogens do not interact. Different ver-

sions of this test, conditioned on the form of available data and whether coinfections are

caused by different pathogen species, allow us to reinterpret a number of previous reports [17,

22, 45–51]. Our examples include plant, animal, and human pathogens, and the methodology

can potentially be applied to any cross-sectional survey data tracking coinfection.

Results

Two noninteracting pathogens

Dynamics of the individual pathogens. We consider two distinct pathogen species,

strains, or clones (henceforth ‘pathogens’), which we assume do not interact; i.e., the
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interaction between the host and one of the pathogens is entirely unaffected by its infection

status with respect to the other. Epidemiological properties that are therefore unaffected by the

presence or absence of the other pathogen include initial susceptibility; within-host dynamics,

including rates of accumulation and/or movement within tissues; host responses to infection;

and onward transmission. Assuming a fixed-size host population and susceptible-infected-sus-

ceptible (S-I-S) dynamics [52], the proportion of the host population infected by pathogen i2
{1,2} follows

_I i ¼ biIið1 � IiÞ � mIi; ð1Þ

in which the dot denotes differentiation with respect to time, βi is a pathogen-specific infection

rate, and μ is the host’s natural death rate.

Whereas natural mortality may be negligible for acute infections, it cannot be neglected for

chronic (i.e., long-lasting) infections, which are responsible for a large fraction of coinfections

in humans and animals [3, 53]. Likewise, plants remain infected over their entire lifetime fol-

lowing infection by most pathogens, including almost all plant viruses, as well as the anther

smut fungus, which drives one of our examples here [45].

We assume that the disease-induced death rate (virulence) is zero, as otherwise there would

be ecological interactions between pathogens [30]. However, our model can be extended to

handle pathogen-specific rates of clearance (S1 Text, Section 4; S2 Text, Section 3).

Tracking coinfection. Making identical assumptions, but instead distinguishing hosts

infected by different combinations of pathogens, leads to an alternate representation of the

dynamics. We denote the proportion of hosts infected by only one of the two pathogens by Ji,
with J1,2 representing the proportion coinfected. Pathogen-specific net forces of infection are

Fi ¼ biIi ¼ biðJi þ J1;2Þ; ð2Þ

and so

_J 1 ¼ F1J∅ � ðF2 þ mÞJ1;

_J 2 ¼ F2J∅ � ðF1 þ mÞJ2;

_J 1;2 ¼ F2J1 þ F1J2 � mJ1;2;

ð3Þ

in which J∅ = 1−J1−J2−J1,2 is the proportion of hosts uninfected by either pathogen (Fig 1).

Prevalence of coinfected hosts. We assume the basic reproduction number, R0,i = βi/
μ>1, for both pathogens. Solving Eq 3 numerically for arbitrary but representative parameters

(Fig 2A) shows the proportion of coinfected hosts (J1,2) to be larger than the product of the

individual prevalences (P = I1I2 from Eq 1). That J1,2(t)�P(t) for large t (for all parameters) can

be proved analytically (S1 Text, Section 1.1). Numerical exploration of the model suggests that

J1,2(t) invariably becomes larger than P(t) relatively rapidly, and well within the lifetime of an

average host, over a wide range of initial conditions and plausible sets of parameter values (S1

Text, Section 1.2; S1 Fig).

Simulations of a stochastic analogue of the model (Fig 2B) reveal the key driver of this

behaviour. The net prevalences of the pathogens considered in isolation, I1 and I2, are posi-

tively correlated (Fig 2C; Eq 27 in Methods section ‘Stochastic models’), because of simulta-

neous reductions whenever coinfected hosts die. The full distribution of point estimates of the

relative deviation from statistical independence (see Eq 5) indicates the deviation is reliably

greater than zero across an ensemble of runs of our stochastic model (Fig 2D). That the devia-

tion is routinely positive is robust to alternative formulations of the stochastic model including

environmental as well as demographic noise (S1 Text, Section 6.1; S2 Fig). It also becomes
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apparent quickly across a wide range of initial conditions; i.e., the sign and magnitude of the

relative deviation are relatively robust to transient behaviour of our model (S1 Text, Section

6.2; S3 Fig).

Quantifying the deviation from statistical independence. For R0,i>1, the equilibrium

prevalence of coinfection in our deterministic model is given by

�J 1;2 ¼
b1 þ b2

b1 þ b2 � m

� �

�I 1
�I 2: ð4Þ

(See also Methods section ‘Equilibria of the two-pathogen model’). We introduce Λ, the rel-

ative deviation of the prevalence of coinfection from that required by statistical independence

(�P ¼ �I 1
�I 2), which here is given by

L ¼
�J 1;2 � P

P
¼

m

b1 þ b2 � m
¼

1

R0;1 þ R0;2 � 1
� 0: ð5Þ

The deviation is zero if, and only if, the host natural death rate is μ = 0. The observed out-

come would therefore conform with statistical independence only for noninteracting patho-

gens when there is no host natural death (at the time scale of an infection). This reiterates the

role of host natural death in causing deviation from a statistical association pattern. The rela-

tive deviation from statistical independence, Λ, becomes smaller as either or both values of R0,i

become larger. Deviations are therefore more apparent for smaller values of R0,i. This is unsur-

prising, since if either pathogen has a very large value of R0, almost all hosts infected with the

other pathogen would be expected to become coinfected, and so both our model and the

assumption of statistical independence would lead to very similar predictions.

This result (Eq 5) was first published by Kucharski and Gog [32] in a different context

(model reduction in multistrain influenza models). Moreover, using a continuous age-struc-

tured model, these authors showed that one may recover statistical independence within infini-

tesimal age classes. The result in Eq 5 is related to ageing, as individuals acquire more infections

as they age. As age increases, so does the probability of being infected with pathogens 1 and/or

Fig 1. Schematic of the model tracking a pair of noninteracting pathogens. The model is defined in Eqs 1–3: J∅
denotes uninfected hosts; J1 and J2 are hosts singly infected by pathogens 1 and 2, respectively; J1,2 are coinfected hosts;

I1 = J1+J1,2 and I2 = J2+J1,2 are net densities of hosts infected by pathogens 1 and 2, respectively.

https://doi.org/10.1371/journal.pbio.3000551.g001
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2. Therefore, the prevalences of pathogens 1 and 2 are positively correlated [33]. A greater devia-

tion from independence as the mortality rate μ increases is likely due to the fact that prevalence

is increasing and concave with respect to age and saturates in older age classes [31].

Testing for interactions between pathogens

Eq 3 can be straightforwardly extended to track n pathogens that do not interact in any way

(including pairwise and three-way interactions). Equilibria of this model are prevalences of

different classes of infected or coinfected hosts carrying different combinations of noninteract-

ing pathogens. These can be used to derive a test for interaction between pathogens that prop-

erly accounts for the lack of statistical independence revealed by our analysis of the simple

two-pathogen model.

Fig 2. Simulations of the two-pathogen model show that net densities of the two pathogens are positively

correlated. J1. and J2 are hosts singly infected by pathogens 1 and 2, respectively; J1,2 is coinfected hosts; I1=J1+J1,2 and

I2=J2+J1,2 are net densities of hosts infected by pathogens 1 and 2, respectively. (A) Dynamics of the deterministic model

(Eqs 1–3), with β1 = 5, β2 = 2.5, and μ = 1 (parameters have units of inverse time). (B) Dynamics of a stochastic version

of the model, in a population of size N = 1,000 (see also Methods section ‘Stochastic models’). (C) A single trajectory

from the stochastic simulation (black line) in panel B (restricted to the time interval starting from the dashed line at

t = 5) in the phase plane (I1,I2), and the 90% and 99% confidence ellipses (dashed and dotted curves, respectively)

generated from an analytical approximation to the stochastic model. The grey dots represent pairs of individual values

of (I1,I2) sampled at time T = 10 from 103 independent replicates of the stochastic model. (D) The probability density of

Λ, the relative deviation of the prevalence of coinfection (Eq 5), as estimated at T = 10 from 104 independent replicates

of our stochastic model when N = 1,000. The relative deviation was much greater than zero in all individual simulations.

The mean value of Λ as estimated from these simulations, �L � 0:1542, was extremely close to the prediction from the

deterministic model, Λ = 1/(5+2.5−1)�0.1538 (Eq 5; these values are marked by red open and blue filled dots on the x-

axis).

https://doi.org/10.1371/journal.pbio.3000551.g002
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Modelling coinfection by n noninteracting pathogens. We denote the proportion of

hosts simultaneously coinfected by the (nonempty) set of pathogens Γ to be JΓ and use Oi =

Γ\{i} (for i2Γ) to represent combinations with one fewer pathogen.

The dynamics of the 2n−1 distinct values of JΓ follow

_JG ¼
X

i2G

FiJOi
�

X

i∉G

Fi þ m
� �

JG; ð6Þ

in which the net force of infection of pathogen i is

Fi ¼ biIi ¼ bi

X

G2ri

JG; ð7Þ

andri is the set of all subsets of {1,. . .,n} containing i as an element. Eq 6 can be interpreted

by noting the following:

• the first term tracks inflow due to hosts carrying one fewer pathogen becoming infected;

• the second term tracks the outflows due to hosts becoming infected by an additional patho-

gen, or death.

If R0,i = βi/μ>1 for all i = 1,. . .,n, the equilibrium prevalence of hosts predicted to be

infected by any given combination of pathogens, �JG, can be obtained by (recursively) solving a

system of 2n linear equations (Eq 16 in Methods section ‘Equilibria of the n-pathogen model’).

These equilibrium prevalences are the prediction of our ‘Noninteracting Distinct Patho-

gens’ (NiDP) model, which in dimensionless form has n parameters (the R0,i’s, i = 1,. . .,n;

Methods section ‘Fitting the models’).

If we simplify the model by assuming that all pathogens are epidemiologically interchange-

able and so all pathogen infection rates are equal (i.e., βi = β for all i), then if R0 = β/μ>1, the

proportion of hosts infected by k distinct pathogens can be obtained by (recursively) solving n
+1 linear equations (Eq 22 in Methods section ‘Deriving the NiSP model from the NiDP

model’). This constitutes the prediction of our ‘Noninteracting Similar Pathogens’ (NiSP)

model, a simplified form of the NiDP model requiring only a single parameter (R0).

Using the models to test for interactions. If either the NiSP or NiDP model adequately

explains coinfection data, those data are consistent with the underpinning assumption that

pathogens do not interact. Which model is fitted depends on the form of the available data,

specifically whether only the number of pathogens or instead which particular combination of

pathogens infecting each host is known.

Studies often quantify only the number of distinct pathogens carried by individual hosts,

without necessarily specifying the combinations involved [22, 45–50]. There are insufficient

degrees of freedom in such data to fit the NiDP model, and so we fall back upon the NiSP

model. In using the NiSP model, we additionally assume all pathogens within a given study are

epidemiologically interchangeable.

We identified four suitable studies reporting data concerning strains/clones of a single

pathogen and tested whether these data are consistent with no interaction. For all four studies

(Fig 3), the best-fitting NiSP model is a better fit to the data than the corresponding binomial

model assuming statistical independence (Eq 28 in Methods section ‘Models corresponding to

assuming statistical independence’). Application of our model to three additional examples for

data sets considering distinct pathogens, which deviate more markedly from the epidemiologi-

cal equivalence assumption, is described in S2 Text, Section 1 (see also S4 Fig, S1 Table, S2

Table).

Coinfections by noninteracting pathogens are not independent and require new tests of interaction
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In one case—coinfection by different strains of human papillomavirus (HPV) [22] (Fig 3A)—

we find no evidence that the reported data cannot be explained by the NiSP model. These data

therefore support the hypothesis of no interaction—and indeed no epidemiological differences—

between the pathogen strains in question.

Fig 3. Comparing predictions of the NiSP model with binomial models assuming statistical independence. In

using the NiSP model, pathogens are assumed to be epidemiologically interchangeable: we have therefore restricted

attention to data sets concerning strains/clones of a single pathogen species. (A) Strains of human papillomavirus [22];

(B) strains of the anther smut pathogen (Microbotryum violaceum) on the white campion (Silene latifolia) [45]; (C)

strains of tick-transmitted bacteria (Borrelia afzelii) on bank voles (Myodes glareolus) [46]; and (D) clones of malaria

(Plasmodium vivax) [47]. Insets to each panel show a ‘zoomed-in’ section of the graph corresponding to high

multiplicities of clone/strain coinfection, using a logarithmic scale on the y-axis for clarity. Asterisks indicate predicted

counts smaller than 0.1. In all four cases, the NiSP model is a better fit to the data than the binomial model (Δ
AIC = 572.8,158.6,293.8 and 596.3, respectively). For the data shown in (A), there is no evidence that the NiSP model

does not fit the data (lack of goodness of fit p = 0.08), and so our test indicates the human papillomavirus strains do not

interact. For the data shown in (B–D), there is evidence of lack of goodness of fit (all have lack of goodness of fit

p<0.01). Our test therefore indicates these strains/clones interact (or are epidemiologically different). The underlying

data for this figure can be found in S3 Data, S4 Data, S5 Data, and S6 Data. AIC, Akaike information criterion; NiSP,

Noninteracting Similar Pathogens.

https://doi.org/10.1371/journal.pbio.3000551.g003
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In the three other cases we considered—strains of anther smut (M. violaceum) on the white

campion (S. latifolia) [45] (Fig 3B), strains of the tick-transmitted bacterium B. afzelii on bank

voles (M. glareolus) [46] (Fig 3C), and clones of a single malaria parasite (P. vivax) infecting

children [47] (Fig 3D)—despite outperforming the model corresponding to statistical indepen-

dence, the best-fitting NiSP model does not adequately explain the data. We therefore reject

the hypotheses of no interaction in all three cases, noting that our use of the NiSP model

means it might be epidemiological differences between pathogen strains/clones—or perhaps

simply lack of fit of the underpinning S-I-S model—that have in fact been revealed.

Other studies report the proportion of hosts infected by particular combinations (rather

than counts) of pathogens, although many of those concentrate on helminth macroparasites

for which our underlying S-I-S model is well known to be inappropriate [54].

However, a methodological article by Howard and colleagues [17] introduces the use of

log-linear modelling to test for statistical associations. Conveniently, that article reports the

results of that methodology as applied to a large number of studies focusing on Plasmodium
spp. causing malaria.

By interrogating the original data sources (Methods section ‘Combinations of pathogens

[NiDP model]’), we found a total of 41 studies of malaria reporting the disease status of at least

N = 100 individuals, and in which three of P. falciparum, P. malariae, P. ovale, and P. vivax
were considered. Data therefore consist of counts of the number of individuals infected with

different combinations of three of these four pathogens, a total of eight classes. There were suf-

ficient degrees of freedom to fit the NiDP model, which here has three parameters, each corre-

sponding to the infection rate of a single Plasmodium spp. Fig 4A shows the example of fitting

the NiDP model to data from a study of malaria in Nigeria [51].

Fitting the NiDP model allows us to test for interactions between Plasmodium spp., without

assuming they are epidemiologically interchangeable. In 18 of the 41 cases we considered, our

Fig 4. Using the NiDP model to reanalyse malaria data sets considered by Howard and colleagues [17]. In using

the NiDP model, there is no need to assume malaria-causing Plasmodium spp. are epidemiologically interchangeable.

(A) Comparing the predictions of the NiDP model with a multinomial model of infection (i.e., statistical

independence) for the data set on P. falciparum (‘F’), P. malariae (‘M’), and P. ovale (‘O’) coinfection in Nigeria

reported by Molineaux and colleagues [51]. The NiDP model is a better fit to the data than the multinomial model (Δ
AIC = 326.2); additionally, there is no evidence of lack of goodness of fit (p = 0.40). This data set is therefore consistent

with no interaction between the three Plasmodium species. (B) Comparing the results of fitting the NiDP model and

the methodology of Howard and colleagues [17] based on log-linear regression and so statistical independence. For 16

(i.e., 12 + 4) out of the 41 data sets we considered, the conclusions of the two methods differ. The underlying data for

this figure can be found in S7 Data and S8 Data. AIC, Akaike information criterion; NiDP, Noninteracting Distinct

Pathogens.

https://doi.org/10.1371/journal.pbio.3000551.g004
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methods suggest the data are consistent with no interaction (Fig 4B). We note that in 12 of

these 18 cases, the methodology based on statistical independence of Howard and colleagues

[17] instead suggests the Plasmodium spp. interact.

Discussion

We have shown that pathogens that do not interact and so have uncoupled prevalence dynam-

ics (Eq 1) are not statistically independent. For two pathogens, the prevalence of coinfection is

always greater than the product of the prevalences (Eq 5), unless host natural death does not

occur. This result was first published in an age-structured, multistrain influenza model [32].

Pathogens share a single host in coinfections, and so when a coinfected host dies, net preva-

lences of both pathogens decrease simultaneously. The prevalences of individual pathogens,

regarded as random variables, therefore covary positively. A related interpretation is due to

Kucharski and Gog [32]: the prevalences of the pathogens are positively correlated through a

single independent variable, namely the age of the hosts. As a side result, we note our analysis

indicates that a high-profile, oft-cited model of May and Nowak [55] is based on a faulty

assumption of probabilistic independence (S1 Text, Section 3). More importantly, our analysis

also shows that statistically independent pathogens may well be interacting (S1 Text, Section

5), which confirms that statistical independence is far from equivalent to the absence of biolog-

ical interaction between pathogens.

More specifically, our results highlight that positive correlations between densities of

infected hosts are a reasonable expectation, even if the pathogens in question do not interact.

It might even be that a positive correlation is found when there is in fact a negative interaction,

providing the confounding effect of age is sufficiently strong. In this context, results concern-

ing the reliability of detecting associations between nematodes and intestinal coccidia (Eimeria
spp.) in natural small-mammal populations presented by Fenton and colleagues [14] are nota-

ble. These authors found that correlation-based cross-sectional analyses often revealed positive

associations between pairs of parasites known to interact negatively with each other (Fig 2 in

[14]). Although our S-I-S model—strictly speaking—is not applicable to macroparasites,

including nematodes, it might be that our results can provide a partial theoretical explanation

of these findings (see also [56], which reports a relative overabundance of positive associations

between resident parasites of 22 small-mammal species). Testing whether and how our meth-

ods generalise to macroparasites would be an interesting development of the work presented

here, and it is possible that such a modelling exercise would provide a theoretical context to

understand these types of correlations in macroparasite data.

We extended our model to an arbitrary number of pathogens to develop a novel test for

interaction that properly accounts for statistical nonindependence. Many data sets summarise

coinfections in terms of multiplicity of infection, regardless of which pathogens are involved.

Since there would then be as many epidemiological parameters as pathogens in our default

NiDP model, and so as many parameters as data points, the full model would be overparame-

terised. We therefore introduced the additional assumption that all pathogens are epidemio-

logically interchangeable. This formed the basis of the parsimonious NiSP model, which is

most appropriate for testing for interactions between strains or clones of a single pathogen

species.

Despite the strong and perhaps even unrealistic assumption that strains/clones are inter-

changeable, the NiSP model outperformed the binomial model assuming statistical indepen-

dence for all four data sets we considered. In particular, the NiSP model successfully captured

the fat tails characteristic of observed multiplicity of infection distributions. All four data sets
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therefore support the idea that coinfection is far more frequent than statistical independence

would imply.

For the data set concerning coinfection by different strains of HPV [22], the NiSP model

also passed a goodness of fit test, allowing us to conclude strains of this pathogen do not inter-

act. Goodness of fit for such a simple model is a particularly conservative test, especially for the

NiSP model, in which we assume pathogens clones/strains are epidemiologically interchange-

able. However, our analysis relied on a model reflecting a natural history most suitable for

chronic infections, with hosts infected until they die. In contrast, HPV infections may be

acute, meaning there is clearance within a few years [42]. However, extending our model to

handle pathogen-specific rates of clearance (S1 Text, Section 4) yielded qualitatively similar

results (S2 Text, Section 3; S5 Fig), suggesting the difference in natural history between HPV

and our model is not driving the results obtained here.

More generally, we wish to very explicitly highlight that here, we illustrated our methods

via case studies for which suitable data are readily available, and our purpose was not to come

to definitive conclusions concerning any particular system. That would require dedicated stud-

ies. However, by fitting even a highly simplified version of our model to data, we have demon-

strated how results of simple epidemiological models challenge previous methods based on

statistical independence.

To explore further the implications of our findings, we analysed available data sets, tracking

distinct combinations of pathogens involved in each occurrence of coinfection. For methodo-

logical-comparison purposes, we restricted ourselves to data referenced by Howard and col-

leagues [17] concerning interactions between Plasmodium spp. causing malaria. Relaxing the

assumption of epidemiological interchangeability (i.e., using the NiDP model), we found that

43.9% (i.e., 18/41) of data sets considered by Howard and colleagues [17] are consistent with

no interaction.

One may wonder whether focusing on age classes may be sufficient to correct for the posi-

tive correlation between noninteracting pathogens [31]. Of the 41 data sets identified by How-

ard and colleagues [17] that we analysed, 14 focused only on data collected from children, and

therefore, associations are less likely to emerge solely by the confounding effect of age [35]. Of

these 14 studies, we came to the same conclusion as Howard and colleagues [17] in only six

cases. We identified two cases in which our methods suggest there is an interaction in which

Howard and colleagues [17] concluded no interaction (studies 71 and 77), as well as six cases

in which we conclude no interaction, whereas Howard and colleagues [17] conclude there is

an interaction (studies 76, 68, 69, 70, 79, and 80). Thus, focusing on discrete and arbitrary age

classes may not be sufficient to correct for the positive correlation between noninteracting

pathogens.

Again, we do not intend to conclusively demonstrate interactions—or lack of interactions

—for malaria. Instead, what is important is that our results very often diverge from those origi-

nally reported by Howard and colleagues [17] using a method based on statistical associations,

namely log-linear regression. Log-linear regression suffers from well-acknowledged difficulties

in cases in which there are zero counts (i.e., certain combinations of pathogens are not

observed) [57]. Such cases often arise in epidemiology. Methods based on epidemiological

models therefore offer a 2-fold advantage: biological interactions are not confounded with sta-

tistical associations, and parameter estimation is well posed, irrespective of zero counts.

Moreover, simple epidemiological models (with no explicit age structure) intrinsically cor-

rect the bias due to the positive correlation between age and prevalence, which makes it unnec-

essary to control for age. Therefore (and this may be our main conclusion), although age is an

evident confounding factor, epidemiological models make it unnecessary to keep track of the

age of infected hosts. This is made possible by replacing the paradigm of ‘statistical
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independence and random distributions’ with ‘model-based distributions in absence of biolog-

ical interactions’.

We focused here on the simple S-I-S model, since it is sufficiently generic to be applicable

to a number of systems. However, an important assumption of our model—as discussed earlier

for the case of HPV—is that natural mortality occurs at a time scale comparable to that of an

infection. Our model is therefore tailored for chronic (i.e., long-lasting) infections, although

we note this represents a large fraction of coinfections in humans, animals, and (particularly)

plants. Also, our study is restricted to nonlethal infections, as otherwise there may be ecological

interactions between pathogens [30]. In future work focusing on interactions between particu-

lar pathogens, models including additional system-specific detail would, of course, be

appropriate.

Other work could also perhaps explicitly focus on more complex epidemiological

dynamics that are relevant across an entire range of systems. As previously discussed, one

possibility is of extending the work to include an underlying model that better represents

macroparasite dynamics [58]. Another example is simultaneous transmission of multiple

pathogens/strains/clones, which can be particularly relevant in the case of chronic viruses

[59]. There are other aspects of host–pathogen interactions that can be important for the

dynamics of chronic infections but that are omitted in the simple S-I-S type model. An

obvious example is spatially explicit transmission rates, often represented in models by

way of contact networks [60] or individual-based models at small [61] or large spatial

scales [62] or the meta-population paradigm [63]. Another factor currently omitted is

individual-level heterogeneity in transmission and/or susceptibility, for example, due to

immunity [64] or genetic variation within host populations [65]. In principle, our meth-

ods could be extended by including these or any other heterogeneities in the underlying

model and testing the extent to which such a model can explain observed prevalence data

when pathogens are assumed not to interact. However, the difficulty would then be in

model parameterisation, since it is unlikely that such complex models could straightfor-

wardly be fitted using the type of cross-sectional data used here; but see Alizon and col-

leagues [42] for parameter inference using Approximate Bayesian Computation in a

model including host heterogeneity in behaviour. Consequently, we defer further analysis

of these and other more complex underpinning epidemiological models to future

research.

We also focused here on tests based on the equilibrium behaviour of our models. In prac-

tice, coinfecting pathogen populations might not yet have equilibrated within the host pop-

ulation of interest, and so it is possible that transient dynamics might play an important

role. However, for tests to be used with cross-sectional data, the assumption of equilibrium

is a logical point of departure. If longitudinal data were to be available, the methodology

presented here could be extended in the obvious way, i.e., by explicitly fitting a compart-

mental model in which pathogens do not interact to prevalence data collected at multiple

time points (see, e.g., [40]). An initial investigation of the first time at which the prevalence

of coinfection exceeds the product of prevalences in our simplest two-pathogen model sug-

gests that it is often the case that the naïve prediction based on statistical independence

becomes invalid relatively quickly, within the average lifetime of a single host. This remains

the case for a wide variety of parameter sets and initial conditions (S1 Text, Section 1.2; S1

Fig). At least for our default parameter set (i.e., the parameters used in Fig 2), irrespective of

the initial condition, simulations of our stochastic model also indicate that any other tran-

sient behaviour is also ‘washed out’ of the system relatively quickly. The full relative devia-

tion from statistical independence is therefore quickly attained irrespective of the particular

initial conditions (see also S1 Text, Section 6.2; S3 Fig). However, we defer more in-depth
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analysis of transient behaviour, including attempting to characterise when any signal might

be detectable from real data, to future work.

Lastly, we speculate our results may have implications beyond epidemiology. After all, patho-

gens are species that form meta-populations occupying discrete patches (hosts) [66]. Meta-com-

munity ecology has long been concerned with whether interactions between species can be

detected from co-occurrence data [43, 67, 68], and most existing methods are based on detect-

ing statistical associations [69, 70] (but see also Hastings [71]). We therefore simply highlight

that our dynamical modelling approach may also provide a new perspective in this area.

Methods

Mathematical analyses

Equilibria of the two-pathogen model. The two-pathogen model is given by Eqs 1–3.

Since the population size is constant, J∅ = 1−J1−J2−J1,2, and so it follows that

_J∅ ¼ mðJ1 þ J2 þ J1;2Þ � ðF1 þ F2ÞJ∅ ¼ mð1 � J∅Þ � ðF1 þ F2ÞJ∅ : ð8Þ

It is well known [52] that if R0,i = βi/μ>1 and Ii(0)>0, the prevalence of pathogen i will tend

to an equilibrium �I i ¼ 1 � 1=R0;i.

Since Fi = βiIi and Ji = Ii−J1,2, the rate of change of coinfected hosts in Eq 3 can be recast as

_J 1;2 ¼ b2I2ðI1 � J1;2Þ þ b1I1ðI2 � J1;2Þ � mJ1;2; ð9Þ

which leads immediately to the results given in Eqs 4 and 5.

Equilibria of the n-pathogen model. The n-pathogen model is given by Eqs 1, 6 and 7.

Since the host population size is constant, J∅ = 1−∑Γ2rJΓ, wherer is the set of all 2n−1 sets

with infected or coinfected hosts. It is also true that

_J∅ ¼ mð1 � J∅Þ �
Xn

i¼1

Fi

 !

J∅ : ð10Þ

At equilibrium, Eq 6 becomes

0 ¼
X

i2G

�Fi
�JOi
�

X

i∉G

�Fi þ m
� �

�JG; ð11Þ

in which �JOi
and �JG are equilibrium prevalences, and �Fi is the force of infection of pathogen i

at equilibrium, i.e.,

�Fi ¼ bi
�I i ¼ bi 1 �

m

bi

� �

¼ bi � m: ð12Þ

Since these forces of infection are constant and do not depend on the equilibrium preva-

lences, the set of 2n−1 equations partially characterising the equilibrium is linear, with

0 ¼
X

i2G

ðbi � mÞ
�JOi
�

X

i∉G

ðbi � mÞ þ m
� �

�JG: ð13Þ
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Similarly, Eq 10 is linear

0 ¼ mð1 � �J∅Þ �
Xn

i¼1

ðbi � mÞ

 !

�J∅ : ð14Þ

The equilibrium prevalences can be written very conveniently in a recursive form (i.e.,

using the first equation to fix �J∅ , using �J∅ to independently calculate all values of �JG for |Γ| = 1,

then using the set of values of �JG when |Γ| = 1 to independently calculate all values of �JG for |Γ|

= 2, and so on). A recurrence relation to find all equilibrium prevalences can therefore be initi-

ated with the following expression for the density of uninfected hosts:

�J∅ ¼
m

mþ
Xn

i¼1

ðbi � mÞ

¼
1

1þ
Xn

i¼1

ðR0;i � 1Þ

: ð15Þ

Then, one may recursively use the following equation, equivalent to Eq 13:

�JG ¼

X

i2G

ðbi � mÞ
�JOi

mþ
X

i∉G

ðbi � mÞ
¼

X

i2G

ðR0;i � 1Þ�JOi

1þ
X

i∉G

ðR0;i � 1Þ
: ð16Þ

Since the densities in Eq 16 are entirely in terms of the equilibrium densities of hosts carry-

ing one fewer pathogen (�JOi
), this allows us to recursively find the densities of all pathogens

given pathogen-by-pathogen values of R0,i.

Deriving the NiSP model from the NiDP model. If all pathogens are interchangeable

and so have identical values of R0,i = R0 8i, then for any pair of combinations of infecting path-

ogens, Γ1 and Γ2, it must be the case that �JG1
¼ �JG2

whenever |Γ1| = |Γ2|. This means the equi-

librium prevalences of hosts infected by the same number of distinct pathogens must all be

equal, irrespective of the particular combination of pathogens that is carried. In this case, solv-

ing the system is much simpler. First, Eq 11 can be rewritten as

0 ¼ jGj�F�JOi
� ððn � jGjÞ�F þ mÞ�JG; ð17Þ

in which �F ¼ b � m. The net prevalence of hosts infected by k distinct pathogens is

�Mk ¼
X

G2rðkÞ

�JG; ð18Þ

in whichr(k) is the set of combinations of {1,. . .,n} with k elements. Since the form of Eq 17

depends only on |Γ|, all individual prevalences involved in �Mk are identical, and so

�Mk ¼ Cn
k
�JG;k; ð19Þ

in which Cn
k is a combinatorial coefficient, and �JG;k is any of the individual prevalences for

which |Γ| = k. The ratio between successive values of �Mk is given by

�Mk
�Mk� 1

¼
Cn

k

Cn
k� 1

�JG;k
�JG;k� 1

¼
n � kþ 1

k

�JG;k
�JG;k� 1

: ð20Þ
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From Eq 15, it follows that

�M0 ¼
m

mþ n�F
¼

1

1þ nðR0 � 1Þ
; ð21Þ

in which R0 = β/μ. For 1�k�n, Eqs 17 and 20 together imply

�Mk ¼
ðn � kþ 1Þ�F
ðn � kÞ�F þ m

�Mk� 1 ¼
ðn � kþ 1ÞðR0 � 1Þ

ðn � kÞðR0 � 1Þ þ 1
�Mk� 1; ð22Þ

a form that admits a simple recursive solution.

Stochastic models. Fig 2B and 2C were generated by simulating the stochastic differential

equation (SDE) corresponding to Eq 3, simulating a continuous-time Markov chain model

using Gillespie’s algorithm gave consistent results. Confidence ellipses were obtained from an

approximate expression for the covariance matrix at equilibrium (see below).

The continuous-time Markov chain model corresponding to the unscaled version of Eqs 3–8

tracks a vector of integer-valued random variables X(t) = (J∅(t),J1(t),J2(t),J1,2(t)). Defining ΔX =

X(t+Δt)−X(t) = (ΔJ∅,ΔJ1,ΔJ2,ΔJ1,2), changes of ±1 to each element of X(t) occur in small periods

of time Δt at the rates given in Table 1. Stochastic trajectories from this model can conveniently

be simulated via the Gillespie algorithm [72]. Note that the numeric values of the infection rates

and the host birth rate must be altered to account for the scaling by population size.

The model can also be written as a system of SDEs, an approximation to the continuous-

time Markov chain that is valid for sufficiently large N [73] and that is particularly well suited

for simulation of the stochastic model when the population size is large. This form of the

model again tracks the seven events in Table 1, although in the SDE formulation the random

variables in X(t) are continuous-valued. A heuristic derivation is based on a normal approxi-

mation described below. Alternately, the forward Kolmogorov differential equations in the

continuous-time Markov chain model are closely related to the Fokker-Planck equation for

the probability density function of the SDE model [74].

Table 1. Transitions in the two-pathogen stochastic models. The prevalence of uninfected host is J∅, the prevalence

of each class of singly infected hosts is Ji (for i2[1,2]), and the prevalence of coinfected host is J1,2. The net force of

infection of pathogen i is Fi = βiIi/N = βi(Ji+J1,2)/N (note the scaling by the population size N relative to the forces of

infection as used in the deterministic version of the model). To ensure a constant host population size, we have made

the simplifying assumption that removal and replacement occur simultaneously; this has no effect on our qualitative

results.

Event

Number

Event Rate Change(s) to state

variable(s) (ΔX)

1 Infection of uninfected host by pathogen 1 F1J∅Δt+o
(Δt)

J∅!J∅−1

J1!J1+1

2 Infection of uninfected host by pathogen 2 F2J∅Δt+o
(Δt)

J∅!J∅−1

J2!J2+1

3 Infection by pathogen 1 of host singly infected by

pathogen 2

F1J2Δt+o
(Δt)

J2!J2−1

J1,2!J1,2+1

4 Infection by pathogen 2 of host singly infected by

pathogen 1

F2J1Δt+o
(Δt)

J1!J1−1

J1,2!J1,2+1

5 Death of host singly infected by pathogen 1 and

replacement with an uninfected host

μJ1Δt+o
(Δt)

J1!J1−1

J∅!J∅+1

6 Death of host singly infected by pathogen 2 and

replacement with an uninfected host

μJ2Δt+o
(Δt)

J2!J2−1

J∅!J∅+1

7 Death of coinfected host and replacement with an

uninfected host

μJ1,2Δt+o
(Δt)

J1,2!J1,2−1

J∅!J∅+1

https://doi.org/10.1371/journal.pbio.3000551.t001
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The expected change EðDXÞ and covariance of the changes VðDXÞ can be computed from

Table 1 to order Δt via

EðDXÞ � ~f Dt and VðDXÞ � EðDX½DX�TÞ ¼ SDt; ð23Þ

where dJ ¼ ~f dt is the unscaled version of the deterministic model as specified in Eqs 3–8 with

N = J∅+J1+J2+J1,2 (a constant) and Fi = βi(Ji+J1,2)/N. In addition, the matrix S is given by

mðN � J∅Þ þ ðF1 þ F2ÞJ∅ � F1J∅ � mJ1 � F2J∅ � mJ2 � mJ1;2

� F1J∅ � mJ1 F1J∅ þ ðF2 þ mÞJ1 0 � F2J1

� F2J∅ � mJ2 0 F2J∅ þ ðF1 þ mÞJ2 � F1J2

� mJ1;2 � F2J1 � F1J2 F2J1 þ F1J2 þ mJ1;2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð24Þ

The changes in a small time interval Δt are approximated by a normal distribution via the

central limit theorem: DXðtÞ � EðDXðtÞÞ � Normalð0;SDtÞ, where 0 = zero vector. The

covariance matrix S can be written as S = GGT. Letting Δt!0, the SDE model can therefore

be expressed as

dX ¼ ~f dt þ GdW: ð25Þ

The matrix G is not unique, but a simple form with dimension 4×7 accounts for each event

in Table 1 [74]. Each entry in matrix G involves a square root, and W is a vector of seven inde-

pendent standard Wiener processes, where dWi�ΔWi(t) = Wi(t+Δt)−Wi(t)~Normal(0,Δt). An

explicit form for the SDE model in Eq 25 is

dJ∅ ¼ ~f 0dt �
ffiffiffiffiffiffiffiffiffi
F1J∅

p
dW1 �

ffiffiffiffiffiffiffiffiffi
F2J∅

p
dW2 þ

ffiffiffiffiffiffi
mJ1

p
dW5 þ

ffiffiffiffiffiffi
mJ2

p
dW6 þ

ffiffiffiffiffiffiffiffiffi
mJ1;2

p
dW7;

dJ1 ¼ ~f 1dt þ
ffiffiffiffiffiffiffiffiffi
F1J∅

p
dW1 �

ffiffiffiffiffiffiffiffi
F2J1

p
dW4 �

ffiffiffiffiffiffi
mJ1

p
dW5;

dJ2 ¼
~f 2dt þ

ffiffiffiffiffiffiffiffiffi
F2J∅

p
dW2 �

ffiffiffiffiffiffiffiffi
F1J2

p
dW3 �

ffiffiffiffiffiffi
mJ2

p
dW6;

dJ1;2 ¼
~f 1;2dt þ

ffiffiffiffiffiffiffiffi
F1J2

p
dW3 þ

ffiffiffiffiffiffiffiffi
F2J1
p

dW4 �
ffiffiffiffiffiffiffiffiffi
mJ1;2

p
dW7:

ð26Þ

In S1 Text, Section 2, we show that the covariance between the prevalences of pathogen

1 and pathogen 2 as they fluctuate in the vicinity of their equilibrium values is approxi-

mately

cov
I1

N
;
I2

N

� �

¼
m�J 1;2

N2½ðb1 � mÞ þ ðb2 � mÞ�
¼

ðb1 þ b2Þðb1 � mÞðb2 � mÞm

Nb1b2ðb1 þ b2 � mÞðb1 � mþ b2 � mÞ
� 0; ð27Þ

with equality if, and only if, μ = 0 (assuming βi>μ, i = 1,2). Only in the specific case μ = 0 is

the deviation from statistical independence equal to zero (Eq 5).

Statistical methods

Models corresponding to assuming statistical independence. If data are observations of

numbers of individuals infected with k distinct pathogens, Ok, for k2[0,n], statistical indepen-

dence corresponds to assuming the infection load of a single individual follows the one-param-

eter, binomial model Bin(n,p), in which p is the pathogen prevalence (assumed identical for

each pathogen and fitted appropriately to the data), and n is the maximum number of infec-

tions that is possible (i.e., the total number of distinct pathogens under consideration). Model

predictions are then simply N samples from this binomial distribution, where N = ∑kOk is the
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total number of individuals observed in the data. One interpretation is as a multinomial model

in which

Ok � Nqk where qk ¼ Cn
kp

kð1 � pÞn� k: ð28Þ

For the data for malaria corresponding to numbers of individuals, OΓ, infected by different

sets of pathogens, Γ, statistical independence corresponds to an n-parameter multinomial

model, parameterised by the prevalences of the individual pathogens pi (again fitted to the

data), i.e.,

OG � N
Y

i2G

pi

Y

i∉G

ð1 � piÞ: ð29Þ

Fitting the models. The host natural death rate, μ, can be scaled out of the equilibrium

prevalences by rescaling time. Fitting the models therefore corresponds to finding value(s) for

scaled infection rate(s) βi, i.e., R0,i = βi/μ (all are equal for the NiSP model).

The method used to fit the model does not depend on whether the data are numbers of

hosts infected by a particular combination of pathogens or numbers of hosts carrying particu-

lar numbers of distinct pathogens, since both can be viewed as N samples drawn from a multi-

nomial distribution, with qj observations of the jth class. If the corresponding probabilities

generated by the model being fitted are pj, then the log-likelihood is

L ¼
X

j

qjlogðpjÞ: ð30Þ

Table 2. Sources of data for fitting the NiSP model in which pathogen types, clones, or strains are assumed to be epidemiologically interchangeable. The data sets

include human papillomavirus [22], anther smut (M. violaceum) [45], B. afzelii on bank voles [46], and malaria (P. vivax) [47]. The underlying data for this table can be

found in S1 Data.

Observed counts, Ok Total

Pathogens with n distinct types, strains, or clones n 0 1 2 3 4 5 6 7 8 9 N
Human papillomavirus 25 2,933 140 64 26 102 39 12 2 2 - 5,412

Anther smut (M. violaceum) 102 285 74 60 32 14 3 3 2 1 1 475

B. afzelii on bank voles 7 807 33 26 13 10 11 6 - - - 906

Malaria (P. vivax) 57 1,023 404 291 208 118 50 16 5 1 1 2,117

Abbreviation: NiSP, Noninteracting Similar Pathogens

https://doi.org/10.1371/journal.pbio.3000551.t002

Table 3. Fitting the NiSP model. The NiSP model was highly supported over the binomial model (ΔAIC�10) in all cases tested. The final column of the table corre-

sponds to the GoF test of the NiSP model; the value p>0.05 is highlighted in bold and corresponds to lack of evidence for failure to fit the data, and so the NiSP model is

adequate for the data concerning human papillomavirus [22].

NiSP Binomial GoF

R0 L p L Δ AIC = 2ΔL p
Human papillomavirus 1.032 −6,580.9 0.031 −6,868.8 575.8 0.077

Anther smut (M. violaceum) 1.008 −614.0 0.008 −693.3 158.6 0.001

B. afzelii on bank voles 1.044 −652.1 0.040 −799.0 293.8 0.000

Malaria (P. vivax) 1.021 −3,169.2 0.021 −3,467.3 596.3 0.000

Abbreviations: AIC, Akaike information criterion; NiSP, Noninteracting Similar Pathogens; GoF, goodness of fit

https://doi.org/10.1371/journal.pbio.3000551.t003
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Table 4. Fitting the NiDP model. Data sets that are consistent with no interaction between the Plasmodium spp. considered are highlighted in grey (and have a row num-

ber marked with bold font in the first column). Such data sets have both p-values for the GoF test of the NiDP model p(GoF)>0.05 (marked in bold in the sixth column),

and ΔAIC�2 (for the comparison between the NiDP model and the multinomial model; marked in bold in the 12th column), meaning the NiDP model is adequate. The

multinomial model corresponds to the statistical independence hypothesis. Parameters R0,1 and R0,2 are associated with P. falciparum and P. malariae, respectively. Param-

eter R0,3 corresponds either to P. vivax (upper part of the table, data sets 74–137) or to P. ovale (lower part of the table, data sets 68–103). The final column contains a “Y”

whenever at least one association between a pair of pathogens was assessed to be significant by Howard and colleagues [17] (and “N” when not significant). A “Y” in cells

shaded pink correspond to possible statistical associations that are consistent with our no-interaction model (NiDP), i.e., cases in which our methods lead to results diverg-

ing from those reported in [17].

Row number in Table 1 in [17] NiDP Multinomial Association(s) in [17]

R0,1 R0,2 R0,3 L p(GoF) p1 p2 p3 L p(GoF) ΔAIC Y

74 1.764 1.256 1.004 −340.7 0.000 0.468 0.220 0.004 −311.0 0.000 −59.3 Y

75 1.694 1.248 1.022 −194.8 0.000 0.445 0.215 0.022 −177.4 0.000 −34.8 Y

76 1.235 1.019 1.005 −492.5 0.251 0.190 0.019 0.005 −493.7 0.098 2.4 Y

82 1.776 1.165 1.108 −996.0 0.000 0.463 0.147 0.101 −936.3 0.000 −119.2 Y

84 1.212 1.017 1.207 −684.2 0.000 0.180 0.017 0.177 −660.4 0.000 −47.6 Y

88 1.296 1.120 1.260 −314.7 0.000 0.242 0.111 0.217 −295.0 0.000 −39.3 Y

106 1.818 1.146 1.055 −4,105.2 0.000 0.442 0.125 0.052 −4,296.6 0.000 382.9 Y

108 1.241 1.024 1.096 −1,147.5 0.000 0.197 0.023 0.089 −1,132.1 0.721 −30.9 N

109 1.023 1.013 1.045 −359.3 0.866 0.023 0.013 0.043 −361.1 0.343 3.5 Y

111 1.198 1.005 1.786 −1,929.2 0.000 0.175 0.005 0.467 −1,798.8 0.000 −260.7 Y

112 1.307 1.086 1.056 −119.6 0.115 0.241 0.080 0.054 −116.6 0.552 −6.0 N

113 1.213 1.007 1.119 −1,324.1 0.000 0.179 0.007 0.108 −1,290.8 0.000 −66.6 Y

114 1.615 1.084 1.038 −1,224.4 0.000 0.392 0.080 0.037 −1,182.6 0.000 −83.6 Y

116 1.780 1.124 1.100 −1,035.1 0.000 0.471 0.116 0.094 −953.5 0.000 −163.2 Y

117 1.072 1.000 1.268 −31,530.5 0.000 0.068 0.000 0.214 −30,958.7 0.000 −1,143.5 Y

118 1.085 1.039 1.171 −225.3 0.990 0.078 0.037 0.146 −227.5 0.515 4.5 Y

119 1.433 1.164 1.375 −265.7 0.000 0.325 0.146 0.291 −249.0 0.146 −33.6 Y

123 1.016 1.055 1.098 −6,684.7 0.000 0.016 0.052 0.090 −6,623.5 0.000 −122.4 Y

124 1.254 1.100 1.082 −3,600.6 0.000 0.206 0.092 0.076 −3,541.3 0.017 −118.7 Y

127 1.341 1.005 1.266 −1,087.4 0.000 0.265 0.005 0.219 −1,039.0 0.000 −96.8 Y

130 1.013 1.002 1.350 −352.7 0.978 0.013 0.002 0.259 −353.7 0.636 2.0 N

132 1.397 1.027 1.074 −591.8 0.347 0.285 0.026 0.068 −594.3 0.067 4.9 Y

133 1.571 1.022 1.332 −687.9 0.000 0.375 0.022 0.257 −676.2 0.001 −23.4 Y

137 1.196 1.005 1.130 −2,356.8 0.000 0.166 0.005 0.117 −2,309.6 0.000 −94.3 Y

68 1.910 1.091 1.021 −152.0 0.200 0.469 0.082 0.020 −157.8 0.002 11.7 Y

69 4.827 1.443 1.036 −177.2 0.822 0.796 0.310 0.035 −181.4 0.121 8.5 Y

70 4.612 1.203 1.089 −239.2 0.953 0.781 0.168 0.082 −247.4 0.012 16.4 Y

71 6.070 1.370 1.181 −310.1 0.001 0.822 0.261 0.148 −336.2 0.000 52.1 N

77 14.275 1.383 1.142 −155.3 0.032 0.944 0.286 0.127 −150.4 0.931 −9.9 N

78 4.171 1.178 1.006 −166.2 0.264 0.773 0.153 0.006 −163.2 0.997 −5.8 N

79 1.855 1.033 1.005 −1,260.1 0.969 0.461 0.032 0.005 −1,263.4 0.224 6.6 Y

80 1.546 1.062 1.021 −715.1 0.735 0.355 0.059 0.020 −715.2 0.675 0.2 Y

95 1.855 1.033 1.005 −1,260.1 0.970 0.461 0.032 0.005 −1,263.4 0.224 6.6 N

96 1.910 1.071 1.017 −240.4 0.019 0.469 0.065 0.016 −248.9 0.000 17.1 N

97 1.952 1.077 1.004 −242.6 0.568 0.486 0.071 0.004 −246.7 0.031 8.3 Y

98 1.662 1.014 1.018 −183.7 0.373 0.396 0.013 0.018 −187.0 0.030 6.6 N

99 1.627 1.019 1.019 −133.7 0.823 0.384 0.019 0.019 −135.6 0.332 3.8 N

100 1.037 1.003 1.000 −432.1 0.254 0.035 0.003 0.000 −433.2 0.083 2.3 Y

101 3.590 1.269 1.063 −11,014.1 0.000 0.720 0.211 0.060 −11,392.7 0.000 757.3 Y

102 2.473 1.153 1.027 −8,188.9 0.403 0.595 0.132 0.027 −8,352.0 0.000 326.2 Y

103 1.798 1.180 1.015 −7,425.7 0.000 0.437 0.150 0.015 −7,736.6 0.000 621.8 Y

Abbreviations: AIC, Akaike information criterion; GoF, goodness of fit; NiDP, Noninteracting Distinct Pathogens

https://doi.org/10.1371/journal.pbio.3000551.t004
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The models were fitted by maximising L via optim() in R [75]. Convergence to a plausible

global maximum was checked by repeatedly refitting the model from randomly chosen start-

ing sets of parameters. All models were fitted in a transformed form to allow only biologically

meaningful values of parameters; i.e., the basic reproduction numbers were estimated after

transformation with log(R0,i−1) to ensure R0,i>1.

Model comparison. To compare the best-fitting NiSP or NiDP model and an appropriate

model assuming statistical independence (binomial or multinomial), we use the Akaike infor-

mation criterion AIC ¼ 2k � 2L̂, in which L̂ is the log-likelihood of the best-fitting version of

each model and k is the number of model parameters. This is necessary because these compari-

sons involve pairs of models that are not nested.

Goodness of fit. We use a Monte-Carlo technique to estimate p-values for model good-

ness of fit, generating 1,000,000 independent sets of samples of total size N from the multino-

mial distribution corresponding to the best-fitting model, calculating the likelihood (Eq 30) of

each of these synthetic data sets, and recording the proportion with a smaller value of L than

the value calculated for the data [76]. This was done using the function xmonte() in the R pack-

age XNomial [77].

Sources of data and results of model fitting

Numbers of distinct pathogens (NiSP model). Results of fitting the NiSP model to data

from four publications for strains of a single pathogen are presented in Fig 3. Error bars are

95% confidence intervals using exact methods for binomial proportions via binconf() in the R

package Hmisc [78]. Results for three further data sets concerning different pathogens of a sin-

gle host [46, 48, 50] are provided in Text S2 Section 1 (see also S4 Fig).

For convenience, the raw data as extracted for use in model fitting are retabulated in

Table 2. Results of model fitting are summarised in Table 3. We used the value n = 102 for the

number of distinct strains by López-Villavicencio and colleagues [45] following personal com-

munication with the authors; there might be undetected genetic differences due to missing

data—which would require a larger value of n in our model-fitting procedure—but we con-

firmed that our inferences are unaffected by taking any value of n2[100,200].

Combinations of pathogens (NiDP model). Howard and colleagues [17] report results of

analysing 73 data sets concerning multiple Plasmodium spp. causing malaria (rows 68–140 of

Table 1 in that paper). We reanalysed the subset of these studies satisfying certain additional con-

straints as detailed in the main text (see S2 Text, Section 2, for a full description of how the stud-

ies were filtered). This left a final total of 41 data sets taken from 35 distinct papers: 24 data sets

considering the three-way interaction between P. falciparum, P. malariae, and P. vivax and 17

data sets considering the three-way interaction between P. falciparum, P. malariae, and P. ovale.
We used our method based on the NiDP model to test whether any of these data sets were

consistent with no interaction between the Plasmodium spp. considered (Table 4). We found

15 data sets for which the NiDP model was (1) a better fit than the multinomial model as indi-

cated by ΔAkaike information criterion (AIC)� 2 and (2) sufficient to explain the data as

revealed by our goodness of fit test. In these 15 cases, our methods therefore support the

hypothesis of no interaction. For 11 of these 15 data sets (76, 109, 118, 130, 132, 68, 69, 70, 79,

95, 97, 98, 99, 100, 102), the results as reported by Howard and colleagues [17] instead suggest

the strains interact.

Code availability

Code illustrating all statistical methods is freely available at https://github.com/nikcunniffe/

Coinfection.
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Supporting information

S1 Text. Mathematical supplements. Further mathematical details on the models considered

in the main text, as well as showing how the models can be extended to account for pathogen-

specific rates of clearance.

(PDF)

S2 Text. Sources of data and side results of model fitting. Gives more details on how data

was selected and extracted, as well as discussing additional results of fitting the models that are

not presented in the main text.

(PDF)

S1 Fig. Numerical investigation of the switching time in the deterministic two-pathogen

model. Panels (A) and (C) show how the switching time was calculated for both ‘random’ (A)

and ‘one pathogen is invading’ (C) initial conditions (described in S1 Text Section 1.2) with

epidemiological parameters chosen via a randomisation procedure (which ensured R0,1 and

R0,2 were independently uniformly distributed between 1 and 5). The distribution of switching

times over a large number of replicates (B and D) show the switching time is always less than

the mean lifetime of an individual host for both initial condition scenarios. In both cases, any

transient is therefore likely to have only limited impact (see also S1 Text Section 6).

(TIF)

S2 Fig. Impact of environmental stochasticity on the deviation between the density of coin-

fecteds and product of the prevalences in a stochastic two-pathogen model. The stochastic

differential equation version of the two-pathogen model was simulated 103 times, in a popula-

tion N = 1,000, but the individual epidemiological parameters β1, β2, and μ were allowed to

vary according to the Cox-Ingersoll-Ross process in Eq S77 in S1 Text (with mean values fol-

lowing the parameterisation used in Fig 2 of the main text). The three rows show results for

σ = 0 (i.e., no environmental noise), σ = 0.25 (i.e., intermediate environmental noise), and σ =

0.5 (i.e., relatively high environmental noise). (A, E, and I) The evolution of the parameters

over time in an individual replicate simulation. (B, F, and J) The corresponding trajectories for

the density of infected hosts. (C, G, and K) The distribution of 103 point estimates of (I1,I2)

when T = 10. (D, H, and L) The empirical distribution of the relative deviation from statistical

independence L ¼ ð�J 1;2 �
�PÞ=�P over the 103 simulations at each level of noise. For all three

levels of noise, the full distributions of Λ remain reliably above zero. (Note that since the level

of noise is set to zero for the results shown in the top row, panels B, C, and D essentially repli-

cate Fig 2B, 2C and 2D in the main text).

(TIFF)

S3 Fig. Impact of transient behaviour on the deviation between the density of coinfecteds

and product of the prevalences. The stochastic differential equation version of the two-patho-

gen model with the parameterisation used in Fig 2 of the main text was simulated 1,000 times

with random initial conditions, in a population N = 1,000. The 95% interval on the value of Λ
as extracted from individual simulations at different times is shown for different assumptions

on the initial conditions (see also S1 Text, Section 1.2). (A) Random initial conditions, with

densities of all four state variables chosen at random. (B) One pathogen is invading the other,

which is initially at equilibrium.

(TIF)

S4 Fig. Comparing the best-fitting NiSP model with a binomial model (i.e., statistical inde-

pendence) for data sets in which different pathogens are considered. Model-fitting results

are shown for (A) pathogens of Ixodes ricinus ticks [50], (B) barley and cereal yellow dwarf
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viruses [49], and (C) human respiratory viruses [48]. Insets to each panel show a ‘zoomed-in’

section of the graph corresponding to high multiplicities of pathogen coinfection, using a loga-

rithmic scale on the y-axis for clarity. Asterisks indicate predicted counts smaller than 0.1. For

the data shown in (A), there is no evidence that the NiSP model does not fit the data, and so

our test indicates the pathogens do not interact. For the data shown in (B), although the NiSP

model is a better fit to the data than the binomial model, there is evidence of lack of goodness

of fit, and so our test indicates these pathogens interact (or are epidemiologically different).

For the data shown in (C), although the binomial model is a better fit to the data than the NiSP

model, there is evidence of lack of goodness of fit, and again it can be concluded that these

pathogens interact (or are epidemiologically different). The underlying data for this figure can

be found in S9 Data, S10 Data, and S11 Data. NiSP, Noninteracting Similar Pathogens.

(TIF)

S5 Fig. Comparing the best-fitting two-parameter NiSP model with a binomial model (i.e.,

statistical independence). Model-fitting results are shown for human respiratory viruses [48].

The inset shows a ‘zoomed-in’ section of the graph corresponding to high multiplicities of

pathogen coinfection, using a logarithmic scale on the y-axis for clarity. The best-fitting NiSP

model converges to the binomial model in this case (which is a special case of NiSP for μ = 0,

see S1 Text [Section 4]). The underlying data for this figure can be found in S12 Data. NiSP,

Noninteracting Similar Pathogens.

(TIF)

S1 Table. Sources of data for fitting the NiSP model in which pathogen species, clones, or

strains are assumed to be epidemiologically interchangeable, even though different patho-

gens are considered. The data sets include pathogens of I. ricinus ticks [50], barley yellow

dwarf viruses [49], and respiratory viruses [48]. The underlying data for this table can be

found in S1 Data. NiSP, Noninteracting Similar Pathogens.

(PDF)

S2 Table. Additional examples of fitting the NiSP model. The NiSP model was highly sup-

ported over the binomial model (ΔAIC�10) in all cases tested but one (respiratory viruses), in

which the binomial model is highly supported over the NiSP model. The final column of the

table corresponds to the GoF test of the NiSP model; values p>0.05 correspond to lack of evi-

dence for failure to fit the data, and so the NiSP model is adequate for the data concerning

pathogens of I. ricinus ticks [50]. AIC, Akaike information criterion; GoF, goodness of fit;

NiSP, Noninteracting Similar Pathogens.

(PDF)

S3 Table. Data sets as extracted from the source references for studies focusing on interac-

tions between P. falciparum, P. malariae, and either P. vivax (i.e., ‘FMV’) or P. ovale (i.e.,

‘FMO’). The asterisks indicate that the corresponding data sets were extracted from the large

compendium collated in 1930 by Knowles and White. The number in the leftmost column

shows the number of the relevant row in Table 1 of [17]. The rows with (!) correspond to stud-

ies for which the total number of individuals sampled as reported by [17] do not match what

we found on interrogating the original paper; in all cases, we used the corrected values as

shown in the table. The notation ‘X’ (in FX, MX, or FMX) corresponds either to ‘V’ (i.e., P.

vivax, upper part of the table, data sets 74–137) or to ‘O’ (i.e., P. ovale, lower part of the table,

data sets 68–103). The underlying data for this table can be found in S2 Data.

(PDF)
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S4 Table. Fitting the NiSP model to data sets corresponding to human papillomavirus

[22], pathogens of I. ricinus ticks [50], anther smut (M. violaceum) [45], barley yellow

dwarf viruses [49], B. afzelii on bank voles [46], malaria (P. vivax) [47], and human respi-

ratory viruses [48]. Parameters for the best-fitting variant of the NiSP model for each patho-

gen species, strain, or clone are highlighted in bold; the two-parameter model is supported in

cases for which p<0.05 in the ‘Model Selection’ part of the table (including human papilloma-

virus and malaria [P. vivax]). The NiSP model was highly supported over the binomial model

(ΔAIC�10) in all cases tested but one (human respiratory viruses). The final column of the

table corresponds to the GoF test of the best-fitting model; values p>0.05 correspond to lack of

evidence for failure to fit the data, and so the NiSP model is adequate for the data concerning

human papillomavirus and pathogens of I. ricinus ticks. These results are qualitatively identical

to those for the model without specific clearance as presented in the main text. Note that in the

NiSP model, β and γ are scaled relative to μ. This is why β and γ of NiDP reach extremely high

values for respiratory viruses. Parameter estimation tends to μ = 0, which actually corresponds

to the binomial model, which has one fewer parameter (see S1 Text Section 4.5 and S5 Fig).

Hence, ΔAIC = −2 for respiratory viruses, since the NiSP model requires one additional param-

eter compared to the binomial model. AIC, Akaike information criterion; GoF, goodness of fit;

NiDP, Noninteracting Distinct Pathogens; NiSP, Noninteracting Similar Pathogens.

(PDF)

S1 Data. Data underlying Table 2 and S1 Table.

(CSV)

S2 Data. Data underlying S3 Table.

(CSV)

S3 Data. Data underlying Fig 3A.

(CSV)

S4 Data. Data underlying Fig 3B.

(CSV)

S5 Data. Data underlying Fig 3C.

(CSV)

S6 Data. Data underlying Fig 3D.

(CSV)

S7 Data. Data underlying Fig 4A.

(CSV)

S8 Data. Data underlying Fig 4B.

(CSV)

S9 Data. Data underlying S4A Fig.

(CSV)

S10 Data. Data underlying S4B Fig.

(CSV)

S11 Data. Data underlying S4C Fig.

(CSV)

S12 Data. Data underlying S5A Fig.

(CSV)
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29. Rohani P, Earn DJ, Finkenstädt B, Grenfell BT. Population dynamic interference among childhood dis-

eases. Proc R Soc Lond B Biol Sci. 1998; 265:2033–2041.

30. Rohani P, Green C, Mantilla-Beniers N, Grenfell B. Ecological interference between fatal diseases.

Nature. 2003; 422:885–888. https://doi.org/10.1038/nature01542 PMID: 12712203

31. Lord C, Barnard B, Day K, Hargrove J, McNamara J, Paul R, et al. Aggregation and distribution of

strains in microparasites. Philos Trans R Soc Lond B. 1999; 354:799–807. 1999;354:799–807.

32. Kucharski AJ, Gog JR. Age profile of immunity to influenza: effect of original antigenic sin. Theor Popul

Biol. 2012; 81:102–112. https://doi.org/10.1016/j.tpb.2011.12.006 PMID: 22209755

33. Kucharski AJ, Andreasen V, Gog JR. Capturing the dynamics of pathogens with many strains. J Math

Biol. 2016; 72:1–24. https://doi.org/10.1007/s00285-015-0873-4 PMID: 25800537

34. Pedersen AB, Fenton A. Emphasizing the ecology in parasite community ecology. Trends Ecol Evol.

2007; 22:133–139. https://doi.org/10.1016/j.tree.2006.11.005 PMID: 17137676

Coinfections by noninteracting pathogens are not independent and require new tests of interaction

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000551 December 3, 2019 23 / 25

https://doi.org/10.1016/j.plantsci.2016.07.015
http://www.ncbi.nlm.nih.gov/pubmed/27717453
https://doi.org/10.1016/j.ijpara.2014.03.001
http://www.ncbi.nlm.nih.gov/pubmed/24704058
https://doi.org/10.1126/science.1190333
https://doi.org/10.1126/science.1190333
http://www.ncbi.nlm.nih.gov/pubmed/20929776
https://doi.org/10.1017/s0031182000077131
http://www.ncbi.nlm.nih.gov/pubmed/8559595
https://doi.org/10.1017/s0031182001007272
http://www.ncbi.nlm.nih.gov/pubmed/11272654
https://doi.org/10.1016/S0140-6736(04)16357-5
http://www.ncbi.nlm.nih.gov/pubmed/15183627
https://doi.org/10.1093/ije/dyh241
http://www.ncbi.nlm.nih.gov/pubmed/15256525
https://doi.org/10.1001/jama.292.6.716
http://www.ncbi.nlm.nih.gov/pubmed/15304469
https://doi.org/10.1016/j.trstmh.2005.08.016
http://www.ncbi.nlm.nih.gov/pubmed/16324731
https://doi.org/10.1093/infdis/jiq139
http://www.ncbi.nlm.nih.gov/pubmed/21402543
https://doi.org/10.1093/infdis/jir709
https://doi.org/10.1093/infdis/jir709
http://www.ncbi.nlm.nih.gov/pubmed/22058418
https://doi.org/10.1186/1471-2334-12-291
https://doi.org/10.1186/1471-2334-12-291
http://www.ncbi.nlm.nih.gov/pubmed/23136960
https://doi.org/10.1093/aje/kww152
http://www.ncbi.nlm.nih.gov/pubmed/27927619
https://doi.org/10.1186/s12879-018-3604-9
http://www.ncbi.nlm.nih.gov/pubmed/30563476
https://doi.org/10.1016/j.tplants.2015.10.014
http://www.ncbi.nlm.nih.gov/pubmed/26651920
https://doi.org/10.1086/491659
https://doi.org/10.1086/491659
http://www.ncbi.nlm.nih.gov/pubmed/16224719
https://doi.org/10.1038/nature01542
http://www.ncbi.nlm.nih.gov/pubmed/12712203
https://doi.org/10.1016/j.tpb.2011.12.006
http://www.ncbi.nlm.nih.gov/pubmed/22209755
https://doi.org/10.1007/s00285-015-0873-4
http://www.ncbi.nlm.nih.gov/pubmed/25800537
https://doi.org/10.1016/j.tree.2006.11.005
http://www.ncbi.nlm.nih.gov/pubmed/17137676
https://doi.org/10.1371/journal.pbio.3000551


35. Fenton A, Viney ME, Lello J. Detecting interspecific macroparasite interactions from ecological data:

patterns and process. Ecol Lett. 2010; 13:606–615. https://doi.org/10.1111/j.1461-0248.2010.01458.x

PMID: 20529102

36. Hellard E, Pontier D, Sauvage F, Poulet H, Fouchet D. True versus false parasite interactions: a robust

method to take risk factors into account and its application to feline viruses. PLoS ONE. 2012; 7:

e29618. https://doi.org/10.1371/journal.pone.0029618 PMID: 22235312

37. Vaumourin E, Vourc’h G, Telfer S, Lambin X, Salih D, Seitzer U, et al. To be or not to be associated:

power study of four statistical modeling approaches to identify parasite associations in cross-sectional

studies. Front Cell Infect Microbiol. 2014; 4:62. https://doi.org/10.3389/fcimb.2014.00062 PMID:

24860791

38. Shrestha S, King AA, Rohani P. Statistical inference for multi-pathogen systems. PLoS Comput Biol.

2011; 7:e1002135. https://doi.org/10.1371/journal.pcbi.1002135 PMID: 21876665

39. Shrestha S, Foxman B, Weinberger DM, Steiner C, Viboud C, Rohani P. Identifying the interaction

between influenza and pneumococcal pneumonia using incidence data. Sci Transl Med. 2013;

5:191ra84. https://doi.org/10.1126/scitranslmed.3005982 PMID: 23803706

40. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between sero-

types of dengue highlight epidemiological impact of cross-immunity. Interface Focus. 2013;

10:20130414.

41. Man I, Wallinga J, Bogaards JA. Inferring pathogen type interactions using cross-sectional prevalence

data: opportunities and pitfalls for predicting type replacement. Epidemiology. 2018; 29:666–674.

https://doi.org/10.1097/EDE.0000000000000870 PMID: 29923864

42. Alizon S, Murall CL, Saulnier E, Sofonea M. Detecting within-host interactions from genotype combina-

tion prevalence data. Epidemics. 2019:100349. https://doi.org/10.1016/j.epidem.2019.100349 PMID:

31257014

43. Forbes SA. On the local distribution of certain Illinois fishes: an essay in statistical ecology. Bull Ill Nat

Hist Surv. 1907; 7:273–303.

44. Cohen JE. Heterologous immunity in human malaria. Q Rev Biol. 1973; 48:467–489. https://doi.org/10.

1086/407705 PMID: 4201093
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