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Abstract
Weexplore the spatial spread of vector-borne infectionswith conditional vector prefer-
ences, meaning that vectors do not visit hosts at random. Vectors may be differentially
attracted toward infected and uninfected hosts depending on whether they carry the
pathogen or not. The model is expressed as a system of partial differential equations
with vector diffusion. We first study the non-spatial model. We show that conditional
vector preferences alone (in the absence of any epidemiological feedback on their
population dynamics) may result in bistability between the disease-free equilibrium
and an endemic equilibrium. A backward bifurcation may allow the disease to persist
even though its basic reproductive number is less than one. Bistability can occur only
if both infected and uninfected vectors prefer uninfected hosts. Back to the model
with diffusion, we show that bistability in the local dynamics may generate travelling
waveswith either positive or negative spreading speeds,meaning that the disease either
invades or retreats into space. In the monostable case, we show that the disease spread-
ing speed depends on the preference of uninfected vectors for infected hosts, but also
on the preference of infected vectors for uninfected hosts under some circumstances
(when the spreading speed is not linearly determined). We discuss the implications of
our results for vector-borne plant diseases, which are the main source of evidence for
conditional vector preferences so far.
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1 Introduction

Vector-borne diseases are a major concern for human, animal and plant health. Since
Ross’ seminal work (1911), most mathematical models of vector-borne infections
consider that vectors visit hosts randomly, independent of their infection status (e.g.,
Wonham et al. 2004; Martcheva 2015). Spatially explicit models are no exception
in this regard (e.g., Lewis et al. 2006). However, growing evidence shows that many
vectors do not visit hosts randomly (e.g., Gandon 2018).

Vectors may be differentially attracted toward infected and uninfected hosts, inde-
pendent of whether or not they carry the pathogen (e.g., Lacroix et al. 2005; Mauck
et al. 2010; Cornet et al. 2013). This is termed a “vector bias” in the modelling lit-
erature (Chamchod and Britton 2011). Kingsolver (1987) was probably the first to
include such a vector bias in a model. He showed that vector preferences can induce
bistability, meaning that the dynamics converge either to a disease-free state or to an
endemic state depending on the initial conditions. However, bistability only occurred
in somewhat special cases in which the vector bias was a function of the fraction of
infected hosts in the population. Later studies generally assumed a constant vector bias
and did not find bistability (Hosack et al. 2008; Chamchod and Britton 2011; Wang
and Zhao 2017), except when disease-induced host mortality and immigration were
included in the model (Buonomo and Vargas-De-León 2013).

Spatially explicit models have also been used to explore the consequences of a
vector bias in space. Individual-based models were formulated to investigate the effect
of spatial heterogeneity on the spread of vector-borne diseases with a vector bias
(McElhany et al. 1995; Sisterson 2008). Chamchod and Britton (2011) were probably
the first to incorporate a vector bias into a partial differential equation (PDE) model.
They numerically showed that travelling waves occur, and how their speed can be
calculated. Later studies then also considered a vector bias in PDE models (e.g., Xu
and Zhao 2012; Bai et al. 2018). In particular, Xu and Zhang (2015) also showed the
existence of travelling wave solutions. In these studies (Chamchod and Britton 2011;
Xu and Zhang 2015), the models did not exhibit bistability, and the travelling waves
had positive speeds, meaning that the disease invades a disease-free spatial domain.

Vector preferences, however, may depend on whether or not vectors carry the
pathogen (Ingwell et al. 2012; Blanc and Michalakis 2016; Gandon 2018; Eigenbrode
et al. 2018; Shoemaker et al. 2019; Carr et al. 2020). These are termed “conditional
vector preferences”. Roosien et al. (2013)were probably the first to include conditional
vector preferences in a model, but they did not fully analyse the model. In particular,
whether or not bistability can occur was left implicit. In a more general version of the
model (accounting for vector handling times), Gandon (2018) showed that conditional
preferences (in particular a preference of uninfected vectors for infected hosts) can lead
to bistability, provided vector fecundity depends on host infection status. Similarly,
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Cunniffe et al. (2021) observed multi-stability in a more complex model accounting
for vector population dynamics that depend on the host infection status. However,
whether conditional preferences can lead to bistability when the vector population
dynamics are independent of the host infection status still remains to be clarified.

Bistability may have important implications regarding the spatial spread of the
disease in space. In particular, it is well known (Fife and McLeod 1977; Lewis and
Kareiva 1993; Lewis and van den Driessche 1993; Owen and Lewis 2001; Fagan et al.
2002; Hilker et al. 2005, 2007) that bistability can give rise to negative wave speeds,
meaning in our context that the disease retreats. This phenomenon is also termed “front
reversal”.

In this study, we analyse whether and how conditional vector preferences can give
rise to bistability and front reversal in vector-borne diseases. The organisation of the
paper is as follows. In Sect. 2, we present a spatio-temporal (reaction-diffusion) model
with conditional vector preferences. In Sect. 3, we provide an analysis of the temporal
(non-spatial) model with some numerical simulations. Then, in Sect. 4, we go back
to the spatio-temporal model (with diffusion), showing existence of travelling wave
solutions. Numerical simulations illustrate our findings. Lastly, Sect. 5 concludes the
paper with a discussion.

2 Spatio-temporal model

Let I (x, t) be the infected host density at time t and location x ∈ R. We adopt a uni-
dimensional representation of space for simplicity. The total host density is assumed
to be a constant N independent of x . The local density of uninfected hosts at time t
is therefore N − I (x, t). Let V (x, t) and U (x, t) be the infected (“viruliferous”) and
uninfected vector densities, respectively. Let b be the vector “biting” rate. Let p and q
be the probabilities of pathogen transmission and acquisition, respectively. Let r be the
removal rate of infected hosts. Infected vectors lose the pathogen at rate l (Chapwanya
and Dumont 2018). Let m be the vector mortality rate. For simplicity, we assume that
the vector birth rate exactly compensates the mortality rate. In addition, we assume
that vectors are born uninfected. There is no vertical transmission in either the vector
or the host. Let a be the preference (attraction) of infected vectors for uninfected hosts:
a = 1 means no preference, a > 1 preference and 0 < a < 1 repulsion. Similarly,
let u be the preference of uninfected vectors for infected hosts. As in Chamchod and
Britton (2011), only the spatial movement of vectors is considered. Let D be the vector
diffusion rate, independent of the vector infection status. The model is:

It = bpV
a(N − I )

a(N − I ) + I
− r I ,

Vt = bqU
uI

u I + (N − I )
− (m + l)V + DVxx , (1)

Ut = (m + l)V − bqU
uI

u I + (N − I )
+ DUxx ,

in which the subscripts denote differentiation with respect to t or x , and in which the
dependence of the state variables on t and x has been omitted.
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2.1 Model simplification

Let W = U + V be the total vector population density. We have Wt = DWxx .
Assuming W (x, 0) = K (the vector carrying capacity) for all x ∈ (−∞,+∞),
Wt (x, 0) = 0 for all x , meaning that W = K for all t ≥ 0 and x ∈ (−∞,+∞).
Therefore, we can substitute U with K − V in model (1), which thus simplifies to a
two-dimensional system:

It = bpV
a(N − I )

a(N − I ) + I
− r I ,

Vt = bq(K − V )
uI

u I + (N − I )
− (m + l)V + DVxx .

(2)

2.2 Non-dimensionalisation

We rescale the state variables and parameters by letting

τ = (m + l)t, ξ = x

√
m + l

D
, i = I

N
, v = V

K

and

β = bpK

(m + l)N
, ρ = r

m + l
, θ = bq

m + l
.

A dimensionless version of model (2) is the following:

iτ = βv
a(1 − i)

a(1 − i) + i
− ρi,

vτ = θ(1 − v)
ui

ui + (1 − i)
− v + vξξ ,

(3)

in which the subscripts denote differentiation with respect to τ or ξ . Note that the two
state variables are both disease prevalences, i.e. they are fractions of the host and the
vector being infected, and take values in the unit interval.

3 Analysis of the non-spatial system

The non-spatial model is:

i ′ = βv
a(1 − i)

a(1 − i) + i
− ρi =: f1(i, v),

v′ = θ(1 − v)
ui

ui + (1 − i)
− v =: f2(i, v).

(4)
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We will also use the following notations: y = (i, v)T and f = ( f1, f2)T .

3.1 Basic reproductive number

System (4) was previously explored in Roosien et al. (2013) and Cunniffe et al. (2021).
It is known that the disease-free equilibrium (i, v) = (0, 0) is locally asymptotically
stable if and only if

R2
0 := b2 pq

rm

K

N
u = βθ

ρ
u < 1.

We refer to R2
0 as the basic reproductive number. Note that R2

0 depends on u (the
preference of uninfected vectors for infected hosts) but does not depend on a (the
preference of infected vectors for uninfected hosts). The results we present next are
original. Let uc be such that R2

0 = 1, i.e.,

uc = ρ

βθ
.

3.2 The system is cooperative

We have

∂ f1
∂v

≥ 0 and
∂ f2
∂i

≥ 0,

since

∂

∂i

(
ui

ui + (1 − i)

)
= u

(1 + i(u − 1))2
> 0.

Therefore, system (4) is cooperative, meaning that the dynamics necessarily converge
to an equilibrium (convergence to a limit cycle is impossible) (Smith 2008).

3.3 Endemic equilibrium

Let us solve the system f1(i, v) = f2(i, v) = 0. An endemic equilibrium (i∗, v∗),
with i∗, v∗ > 0, satisfies:

Q
(
i∗
) = Ai∗2 + Bi∗ + C = 0,

in which

A = (a − 1)(u(1 + θ) − 1),
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B =
(

(2 − (1 + θ)u) − βθ

ρ
u

)
a − 1 = −

(
((1 + θ)u − 1) + (R2

0 − 1)
)
a − 1,

C = a

(
βθ

ρ
u − 1

)
= a

(
R2

0 − 1
)

.

Let u∗ be such that A = 0:

u∗ = 1

1 + θ
. (5)

Note that A has no reason to be zero in general (A = 0 only for a = 1 or u = u∗).
The coefficient A can be also expressed as

A = (a − 1)
( u

u∗ − 1
)

.

First, we notice that

Q(1) = −u(1 + θ) < 0. (6)

Next, we distinguish two cases: R2
0 > 1 and R2

0 < 1. (The boundary case R2
0 = 1 is

addressed in Appendix A.1 for the sake of completeness.)

3.4 CaseR2
0 > 1

If R2
0 > 1, then Q(0) = C > 0. Since Q(1) < 0 (Eq.6), there is exactly one root i∗

in [0, 1], which is the endemic equilibrium. Appendix A.2 shows that

i∗ =
{ −C

B if a = 1 or u = u∗ (special cases implying A = 0),
1
2A (−B − √

�) otherwise,

where � = B2 − 4AC is the discriminant.

3.5 CaseR2
0 < 1

IfR2
0 < 1, then C < 0.

Since Q(0) = C < 0, and Q(1) < 0 (Eq. 6), either there is no root in between
0 and 1 or there are two roots (unless the discriminant � is zero, in which case
there is a single root, of course). The existence of biologically feasible equilibria
requires A < 0. Since this implies AC > 0, an additional necessary condition for
the existence of endemic equilibria is that the discriminant � is non-negative. The
additional conditions are Q′(0) = B > 0 and Q′(1) = 2A + B < 0.
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If these conditions (R2
0 < 1, A < 0, � ≥ 0, B > 0, and 2A + B < 0) are

simultaneously satisfied, there are two positive equilibria with components

i∗1,2 = 1

2A

(
−B ± √

�
)

, (7)

since A < 0 and B > 0. We set E1 = (i∗1 , v∗
1) and E2 = (i∗2 , v∗

2) and notice that the
equilibria are ordered, i.e. E1 < E2, since i∗1 < i∗2 and v∗

1 = g(i∗1 ) < v∗
2 = g(i∗2 ),

where g(i) = ρ

β

(
1 + i

a(1 − i)

)
i is an increasing function corresponding to f1 = 0

in (4).

3.5.1 Necessary conditions for two equilibria

Here, wewill derive two necessary conditions on the vector preferences, namely a > 1
and u < u∗ < 1 (since u∗ = 1/(1+θ), as defined in Eq. 5), for two positive equilibria
to coexist.

First, B can be expressed as

B = −
(
1 + θ + θβ

ρ

)
au + (2a − 1).

Therefore, B > 0 is equivalent to

u <
(2a − 1)(

1 + θ + θβ
ρ

)
a

=: u+.

Second, B + 2A < 0 can be expressed as

(
(θ + 1)(a − 2) − θβ

ρ
a

)
u + 1 < 0. (8)

A necessary condition for the inequality (8) to hold is

θβ

ρ(θ + 1)
>

a − 2

a
=: R1. (9)

Assuming inequality (9) holds, B + 2A < 0 (inequality 8) is equivalent to

u >
1

θβ
ρ
a − (θ + 1)(a − 2)

=: u−.

So far, we have shown that conditions B > 0 and B + 2A < 0 are equivalent
to u < u+ and u > u− (provided inequality 8 holds), respectively. A necessary
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condition for these conditions to hold is therefore u− < u+. The latter inequality can
be equivalently expressed as

1
θβ
ρ
a − (θ + 1)(a − 2)

<
2a − 1((

1 + β
ρ

)
θ + 1

)
a

,

which is equivalent to

(
1 + β

ρ

)
θ + 1 <

(
2 − 1

a

)(
θβ

ρ
a − (θ + 1)(a − 2)

)
.

After rearrangement, the above inequality can be rewritten as

(θ + 1)(a − 1)2 < a(a − 1)
θβ

ρ
.

A necessary condition for the above inequality to hold is a > 1. Assuming a > 1, this
inequality can be equivalently expressed as

θβ

ρ(1 + θ)
>

a − 1

a
=: R2.

Since R2 > R1, the above inequality guarantees that inequality (9) is satisfied.
We were not able to get more results from this preliminary analysis, but we have

shown that a > 1 is a necessary condition for two endemic equilibria to coexist.
Assuming a > 1, the condition A < 0 is equivalent to

u <
1

1 + θ
= u∗.

Hence, a > 1 and u < u∗ < 1 are necessary conditions for two positive equilibria to
coexist.

3.5.2 Numerical example of bistability

Since necessary and sufficient conditions were hardly expressible with pen and
paper, we used symbolic calculation software (Maple 2022) to disentangle the condi-
tions for two positive equilibria to coexist. To simplify things, we let

X = u(1 + θ) − 1 and Y = R2
0 − 1. (10)

This way,

A = (a − 1)X , B = −(X + Y )a − 1 and C = aY .

SinceR2
0 < 1, Y < 0. Since a > 0, C < 0. The previous section showed that A < 0,

a > 1, and therefore X < 0 are necessary conditions for two positive equilibria to
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Fig. 1 Phaseportraits of the non-spatialmodel (4)withv- and i-nullclines (blue and red curves, respectively).
Stable (unstable) equilibria are shown as filled (empty) circles. The basins of attraction to the endemic
(disease-free) equilibrium are shown in light red (light blue). (a) The endemic equilibrium is the only
attractor. Parameter value: u = 0.3, soR2

0 = 1.44 > 1. (b) Bistable case. The black line is the separatrix of
the two basins of attraction. The dashed rectangles indicate analytically obtained sets of initial conditions
that are known to approach the disease-free (Blue) or endemic (Red) equilibrium. They are part of the actual
basins of attraction, see Sect. 3.6 for more details. Parameter value: u = 0.15, soR2

0 = 0.72 < 1. All other
parameter values: a = 15, β = 2.4, ρ = 1, θ = 2 (colour figure online)

Fig. 2 Bifurcation diagram of
the non-spatial model (4). Stable
(unstable) steady states are
shown in solid (dashed) line.
There is a backward bifurcation
at u = uc ≈ 0.2083 and a fold
bifurcation at u ≈ 0.1425. Other
parameter values as in Fig. 1

 0

 0.2

 0.4

 0.6

 0.8

 1

  u

u
c 0.1  0.15  0.2  0.25  0.3

Preference of uninfected vectors for infected hosts, 

coexist. We thus used the function “solve” in Maple to solve the following system of
inequalities,

A < 0, B > 0, (2A + B) < 0, B2 − 4AC > 0, Y < 0, a > 1, X < 0

with respect to X ,Y and a. Letting

h(Y , a) := Ya2 − (2Y + 1)a − 2
√−Ya2(a − 1)(Y + 1)

a2
,

we obtained the following set of conditions:
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Fig. 3 Two-parameter bifurcation diagram of the non-spatial model (4). The fold bifurcation where two
endemic equilibria coalesce is shown in blue. The vertical line marks the transcritical bifurcation curve,
which occurs atR2

0 = 1.When the vertical line is solid (dashed), there is a standard transcritical (backward)
bifurcation. The fold and transcritical bifurcation curves meet at (uc ≈ 0.2083, ac ≈ 2.6666). The insets
are nullcline examples of parameter values leading to different dynamical regimes. Other parameter values
as in Fig. 1 (colour figure online)

• If 1 < a < 2,

Ya + 1

a − 2
< X < h(Y , a), and Y > −a − 1

a
.

• If a = 2,

X < −1

2
− √−Y (Y − 1) = h(Y , 2), and Y > −1

2
.

• If a > 2:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X < h(Y , a) if Y > −1

a
,

X < −4
a − 1

a2
= h

(
1

a
, a

)
if Y = −1

a
,

impossible if Y ∈
[
−a − 1

a
,−1

a

)
,

X <
Ya + 1

a − 2
if Y < −a − 1

a
.

This condition set allowed us to find parameter values for which bistability occurs;
see Figs. 1, 2 and 3 for phase portraits, one-parameter, and two-parameter bifurcation
diagrams, respectively.

3.6 Local and global asymptotic stability

The system being monotone cooperative, proving global asymptotic stability (GAS)
relies on local asymptotic stability (LAS) and the use of some appropriate theorems.
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The Jacobian of system (4) is

J (i, v) =

⎛
⎜⎜⎝

−βv
a

(a(1 − i) + i)2
− ρ β

a(1 − i)

a(1 − i) + i

θ(1 − v)
u

(ui + (1 − i))2
−θ

ui

ui + (1 − i)
− 1

⎞
⎟⎟⎠ .

Notice that J (i, v) is irreducible for all (i, v) ∈ [0, 1)2. At equilibrium (0, 0), we
have

J (0, 0) =
(−ρ β

θu −1

)
,

from which we deduce that 0 = (0, 0)T is LAS whenR2
0 = βθu/ρ < 1 and unstable

when R2
0 > 1.

When R2
0 > 1, only one positive endemic equilibrium, E , exists in [0, 1]2. Thus,

when R2
0 > 1, using Theorem 6 in Anguelov et al. (2012) (see also Smith 2008),

with a = (0, 0) and b = (1, 1) such that f (b) ≤ 0 ≤ f (a), we deduce that the
endemic equilibrium E is GAS on [0, 1]2. Similarly, whenR2

0 < 1, in the case when
no endemic equilibrium exists, we can show, using the same approach, that 0 is GAS.

AssumeR2
0 < 1. In the case where 0, E1, and E2 co-exist such that 0 
 E1 
 E2,

we already know that 0 is LAS.We can check (at least numerically) that E1 is unstable
and E2 is LAS. Following Smith (2008, Theorem 2.2.2), it is straightforward to show
that the set {y ∈ R

2 : 0 ≤ y < E1} is in the basin of attraction of 0, while the set
{y ∈ R

2 : E1 < y ≤ 1}, where 1 = (1, 1)T , is in the basin of attraction of E2
(Fig. 1B).

4 Back to the systemwith diffusion

In this section, we get back to the system with diffusion, i.e., system (3).

4.1 Existence and uniqueness of a solution

System (3), with non-negative initial conditions and appropriate boundary conditions,
is a partly dissipative or a partially degenerate system. We consider the following
spaces

S =
{
(i, v)|v ∈ L2(R); i ∈ L∞(R)

}
,

and

S1,1 = {(i, v) ∈ S|0 ≤ v ≤ 1; 0 ≤ i ≤ 1} .

Following Rothe (1984, Theorem 1, p. 111), or Rauch and Smoller (1978, Theo-
rem 2.1), we can show local existence and uniqueness. Then, using a priori L∞
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estimates, the fact that the right-hand side of (3) is quasi-positive and the maximum
principle lead to

Theorem 1 (Existence and uniqueness). For any initial values (i0, v0) ∈ S1,1, sys-
tem (3) admits a unique non-negative bounded solution such that

i ∈ C
(
[0,∞) ; L∞(R)

) ∩ C1 ([0,∞) ; L∞(R)
)

and

v ∈ C
(
[0,∞) ; L∞(R)

) ∩ C
(
[0,∞) ; H2(R)

)
∩ C1

(
[0,∞) ; L2(R)

)
.

Since the study of the non-spatial system showed us that, depending on parameter
values, it can be monostable or bistable, it seems relevant to study the existence (or
non-existence) of travelling wave solutions.

4.2 Monostable case

In this section, we assume R2
0 > 1. We know from the non-spatial system that the

disease-free equilibrium 0 is unstable and the endemic equilibrium E is GAS. Does a
travelling wave solution connecting 0 to E exist?

4.2.1 Existence of a travelling wave

In the monostable case, the existence of a travelling wave should derive from the
fact that the system is cooperative (Li et al. 2005); the problem is that the system
is partially degenerate (Fang and Zhao 2009; Li 2012). However, for this situation
powerful theorems exist (Fang and Zhao 2014; Li 2012), see also Doli (2017).

Here, we will use Theorem 4.2 in Li (2012) for the following system:

∂y
∂t

= D
∂2y
∂x2

+ f(y(t, x)),

with y = (y1(t, x), . . . , yk(t, x)), D = diag(d1, . . . , dk) ≥ 0 and f = ( f1, . . . , fk).
According to Li (2012), the following hypotheses have to be checked (Hypotheses 2.1
in Li 2012):

1. There is a proper subset 	0 of {1, . . . , k} such that di = 0 for i ∈ 	0 and di > 0
for i /∈ 	0.

2. f(0) = 0, there is a constant γ � 0 such that f(γ ) = 0 which is minimal in the
sense that there is no constant ν other than γ such that f(ν) = 0 and 0 
 ν 
 γ ,
and the equation f(α) = 0 has a finite number of constant roots.

3. The system is cooperative.
4. f(α) is uniformly Lipschitz in α such that there is η > 0 such that for any αi ,

i = 1, 2, ‖(α1) − f(α2)‖ ≤ η‖α1 − α2‖.
5. f has the Jacobian f ′(0) at 0 with the property that f ′(0) has a positive eigenvalue

whose eigenvector has positive components.
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Fig. 4 Monostable travelling wave solution of model (3) connecting the disease-free and endemic equilibria
0 and E whenR2

0 = 1.44 > 1. Here u = 0.3, other parameter values as in Fig. 1

AssumingR2
0 > 1, and k = 2, it is straightforward to check the first three hypotheses

for system (3), where γ = E . The fourth hypothesis requires long computations for
a �= 1 and u �= 1 to be checked. Lastly, we have

f ′(0) =
(−ρ β

θu −1

)
.

Since R2
0 > 1, it is straightforward to show that f ′(0) has a positive eigenvalue,

λ = 1

2

(√
(1−ρ)2 + 4ρR2

0 − (1 + ρ)

)
, associated with the positive eigenvector

(
1,

λ + ρ

β

)T

. Thus, according to Theorem 4.2 in Li (2012), we deduce the existence

of a travelling wave connecting 0 to γ = E . See, for instance, Fig. 4.

4.2.2 Derivation of the linear spreading speed

Still assuming R2
0 > 1, we consider a travelling front connecting the disease-free

equilibrium, 0 to the endemic equilibrium, E . We posit that, in some circumstances,
the front speed is linearly determined by the minimum possible wave speed based on
the linearisation at the leading edge of the wave. We apply the minimum wave speed
approach (Lewis and Schmitz 1996; Hadeler and Lewis 2002; Bampfylde and Lewis
2007; Hilker and Lewis 2010; Hamelin et al. 2022) to the linearised model to find the
linear spreading speed as a critical point. However, we stress that the linear spreading
speed may be only a lower bound of the actual spreading speed in some cases (see
Fig. 11 in Appendix B.2).

123



   38 Page 14 of 32 F. M. Hamelin et al.

At the leading edge of the front invading the disease-free equilibrium, i and v have
small positive values. We linearise system (3) at the leading edge:

iτ = βv − ρi,

vτ = θui − v + vξξ .

We are interested in travelling wave solutions such that

y =
(
i
v

)
= k exp(−s(ξ − cτ)),

in which k is an implicit column vector, c is the linear wave speed, and s is the
exponential decay rate of the wave profile at leading edge.

Plugging the previous expression in the system, we obtain

scy =
[−ρ β

θu −1 + s2

]
︸ ︷︷ ︸

Ms

y, (11)

which implies that

det

[−ρ − sc β

θu −1 + s2 − sc

]
︸ ︷︷ ︸

Ms−scI

= 0,

in which I is the identity matrix. This yields

0 = (−ρ − sc)(−1 + s2 − sc) − θuβ,

= Fc2 + Gc + H ,
(12)

with

F = s2, G = s(ρ + 1 − s2), H = ρ(1 − s2) − θuβ.

Next, we follow the approach of using Eq. (12) to calculate the minimum linear wave
speed as outlined in Hadeler and Lewis (2002).

The discriminant of the quadratic in Eq. (12) is

� = G2 − 4FH ,

= s2
((

ρ + 1 − s2
)2 − 4ρ(1 − s2) + 4θuβ

)
,

= s2
((

ρ − 1 + s2
)2 + 4θuβ

)
> 0.
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Since � > 0, there are two real roots:

z = −G − √
�

2F
and c = −G + √

�

2F
.

First, we show that z < 0. IfG > 0, then z < 0 since F > 0. Otherwise (ifG < 0),
then −G − √

� > 0 is equivalent to 0 > −4FH , which is impossible since H < 0
(this is because G < 0 implies 1 − s2 < 0).

Second, we show that c > 0 for all s > 0. If G < 0, then c > 0 since F > 0.
Otherwise (if G > 0), then −G +√

� > 0 ⇔ � > G2 is equivalent toR2
0 > 1− s2,

which is satisfied since we assume R2
0 > 1 in this section.

The relevant root is therefore c. Since Eq. (12) only depends on three additional
parameters, s, ρ and βθu, we express c as a function of these parameters:

c(s, ρ, βθu) = −(ρ + 1 − s2) +
√(

ρ − 1 + s2
)2 + 4θuβ

2s
.

Since c is a convex function of s (Appendix B.1), lims→0 c(s, ρ, βθu) = +∞, and
lims→+∞ c(s, ρ, βθu) = +∞, there exists a minimum to c with respect to s > 0.

Equation (12) can also be written to include the dependency of c on s, ρ, and βθu
as

P(c(s, ρ, βθu), s) := (−ρ − sc)(−1 + s2 − sc) − θuβ.

Differentiating with respect to s, we have, for all s,

dP

ds
= ∂P

∂c

∂c

∂s
+ ∂P

∂s
= 0. (13)

We are interested in the minimum possible linear wave speed. Let

s�(ρ, βθu) = argmin
s

c(s, ρ, βθu),

and

c�(ρ, βθu) = c(s�(ρ, βθu), ρ, βθu).

Since c� is such that ∂c/∂s = 0, Eq. (13) yields

∂P

∂s

(
c�(ρ, βθu), s�(ρ, βθu)

) = 0. (14)

Since P is cubic in s, ∂P/∂s is quadratic in s. We are interested in the conditions on
the coefficients that allow both polynomials to have a common root, s�. They are given
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Fig. 5 Linear speed of themonostable travellingwave as a function of u (the preference of uninfected vectors
for infected hosts). The inset zooms on small values of u and compares the linear and actual (numerically
computed) spreading speeds in model (3). The spreading speed is not linearly determined in the bistable
case (u < uc) and in the monostable case (u > uc) for u close to uc . However, the actual speed quickly
converges to the linear speed as u increases. Other parameter values as in Fig. 1

by cancelling the resultant of the two polynomials. Letting P = es3 + f s2 + gs + h
yields ∂P/∂s = 3es2 + 2 f s + g. The coefficients are identified as

e = −c, f = c2 − ρ, g = (ρ + 1)c, h = −θuβ + ρ.

The resultant is r(e, f , g, h) = −e( f 2 g2 − 4eg3 − 4 f 3 h + 18e f gh − 27e2 h2), as
described in Janson (2010, Eq. 4.3). The equality r(e, f , g, h) = 0 can be equivalently
expressed as a cubic with respect to c2:

c3(c
2)3 + c2(c

2)2 + c1(c
2)1 + c0 = 0, (15)

with

c3 = 4βθu + (ρ − 1)2,

c2 = 2ρ3 + 2ρ2 + (6βθu − 8)ρ + 18θuβ + 4,

c1 = ρ4 + 8ρ3 − (6βθu + 8)ρ2 + 36uρβθ − 27u2β2θ2,

c0 = −4ρ3(βθu − ρ) = −4ρ4(R2
0 − 1).

Sincewe assume R2
0 > 1,we have that c0 is negative and c3 is positive,whichmeans

that we are in the same configuration as Hadeler and Lewis (2002). This implies that
c�(ρ, βθu) is uniquely defined as the square root of the largest root of the above cubic.

Although it is possible to write down the formula for the largest root of a cubic
polynomial, we have no simple expression of c�(ρ, βθu). Figure5 shows theminimum
linear speed of the monostable travelling wave solution as a function of u, as obtained
by solving the cubic Eq. (15).
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Fig. 6 Bistable travelling wave solution of model (3) connecting the disease-free and endemic equilibria 0
and E2 when R2

0 = 0.96 < 1. Here u = 0.2, other parameter values as in Fig. 1. The disease is invading,
c∗ > 0

4.3 Bistable case

In this section, we assumeR2
0 < 1.

4.3.1 Existence of a travelling wave

To show the existence of a bistable travelling wave solution, we will consider
Theorem 4.2 in Fang and Zhao (2009). We have to verify that assumption (L):
f ∈ C1(R2,R2) satisfies the following conditions:

1. f (0) = f (E2) = f (E1) = 0, with 0 
 E1 
 E2. There is no η other than 0, E1
and E2 such that f (η) = 0, with 0 ≤ η ≤ E2.

2. System (3) is cooperative.
3. y ≡ 0 and y ≡ E2 are stable while y ≡ E1 is unstable, that is

λ0 := s( f ′(0)) < 0, λE2 := s( f ′(E2)) < 0, λE1 = s( f ′(E1)) > 0.

4. f ′(0), f ′(E1), and f ′(E2) are irreducible.

Assuming that assumption (L) holds, then according to Theorem 4.2 in Fang and
Zhao (2009), system (3) admits a monotone wavefront (U , c) with U (−∞) = 0 and
U (+∞) = E2.

SinceR2
0 < 1, two positive endemic equilibria, E1 and E2, exist. Equilibrium E1 is

unstablewhile E2 is LAS. Thanks to the results obtained in Sect. 3, it is straightforward
to check that assumption (L) holds and to conclude that a travelling wave solution
connecting 0 and E2 exists. See, for instance, Fig. 6.
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Fig. 7 Bistable travelling wave solution of model (3) connecting the disease-free and endemic equilibria 0
and E2 whenR2

0 = 0.72 < 1. Here u = 0.15, other parameter values as in Fig. 1. Starting at t = 200 with
the solution from Fig. 6 as initial condition, the spread is reversing, c∗ < 0. This shows that a small variation
of the parameter u (switching from u = 0.2 in Fig. 6 to u = 0.15 in this figure) can make the spreading
speed switch from positive to negative. This is why the equilibrium prevalences decrease compared to initial
conditions (at t = 200)

In Fig. 7, we show that for u sufficiently small, the sign of the spreading speed
can change. Thus, in the bistable case, for a given a � 1, there exist u† and u∗,†

such that for u† < u < u∗ the disease travelling wave moves forward, while for
u∗,† < u < u† the disease travelling wave moves backward. When u < u∗,† then the
system converges to 0.

4.3.2 Quasi-steady-state approximation

For the case of a quasi-steady-state approximation (QSSA) (see Appendix B.2 for
details), we can gain more information on the parameter domain for which the travel-
ling wave moves forward or backward. The direction is given by the expression (25)
in Appendix B.2.

Figure 8 marks the boundary between wave advancement and reversal by red dots.
This boundary corresponds to stalled travelling waves with speed zero. The QSSA
results match very well with the zero wave speeds in the original system without a
quasi-steady-state approximation (dark grey squares). This match may be particularly
surprising becausewe have chosen a time scale parameter of ρ = 1 for the simulations,
while the QSSA is based on the assumption ρ � 1. However, Fig. 9 in Appendix B.2
suggests that the wave speed approximations do not deviate much from the exact
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Fig. 8 Within the bistable parameter domain (light grey), travelling waves connecting the disease-free and
endemic equilibria can reverse or advance. The parameter domains of reversal and advance are separated by
a curve corresponding to stalled waves with zero wave speed. Here, the zero-wave speed curve is obtained,
on the one hand, by numerical integration of the PDE system (3) with ρ = 1, β = 2.4, θ = 2 and
identifying parameter values to result in zero wave speed, accurate to at least the third decimal place (grey
squares). On the other hand, the zero wave speed curve was indicated by Eq. (25) in Appendix B.2 using a
quasi-steady-state assumption (red points). Other curves as in Fig. 3 (colour figure online)

solutions for small spreading speeds and ρ ≥ 1. This behaviour might explain why
the QSSA correctly locates the c = 0 curve in Fig. 8.

In the monostable case, the QSSA allows us to derive an explicit expression for the

linear wave speed (see Eq. 23 in Appendix B.2), which is simply c∗ = 2
√
R2

0 − 1.
However, the linear spreading speed is only a lower bound of the actual spreading
speed in somes cases (Fig. 11).

5 Discussion

We have shown that conditional vector preferences may result in bistability between
the disease-free equilibrium and an endemic equilibrium. The novelty compared to
Gandon (2018) and Cunniffe et al. (2021) is that bistability here occurs in the absence
of any epidemiological feedback on vector population dynamics.

More specifically, we have shown that conditional vector preferences can cause a
“backward bifurcation” (Fig. 2), meaning thatR2

0 < 1 is not a sufficient condition for
the disease to go extinct (e.g., Hadeler and van den Driessche 1997).
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5.1 Bistability conditions

We have shown that for bistability to occur, the following necessary conditions must
be satisfied:R2

0 < 1, a > 1 and u < u∗ < 1. The first condition (R2
0 < 1) means that

the basic reproductive number of the pathogen is not large enough for the pathogen to
invade a disease-free population. Hence, the disease-free equilibrium is locally stable.
However, if the prevalence of the infection is initially high, and if infected vectors
have a sufficiently strong preference for uninfected hosts (a > 1), we have shown
that the pathogen may persist in the population (an endemic equilibrium is locally
stable as well) even though R2

0 < 1. These two conditions (a > 1 and R2
0 < 1) are

not too surprising. The third condition (implying u < 1) is less intuitive. To interpret
it, we recall that R2

0 is proportional to u. If R2
0 < 1 in spite of u > 1 (uninfected

vectors prefer infected hosts, which is advantageous for the pathogen), this means that
the pathogen has poor reproductive abilities. Therefore, even if the prevalence of the
infection is initially high, the pathogen still goes extinct. By contrast, ifR2

0 < 1 while
u < 1 (uninfected vectors prefer uninfected hosts), it may be that the pathogen has
strong enough reproductive abilities not to go extinct when its prevalence is initially
high, and infected vectors prefer uninfected hosts (a > 1).

5.2 Travelling waves

5.2.1 Monostable case

In the monostable case (R2
0 > 1), the disease invades the spatial domain. We have

shown that the linear spreading speed depends only on ρ and βθu, meaning that it
does not depend on a, the preference of infected vectors for uninfected hosts. The
interpretation is the same as for the basic reproductive number, R2

0 = βθu/ρ, which
does not depend on a either (Roosien et al. 2013; Gandon 2018; Cunniffe et al. 2021).
In a situation close to the disease-free equilibrium, like at the leading edge of the front,
there are so few infected hosts that the preference of infected vectors for uninfected
hosts has a negligible effect on the dynamics. However, even in the monostable case,
the spreading speed may not be linearly determined (Fig. 5), implying that it may
depend on a (Fig. 12). This is due to the fact that disease spread is not driven by the
leading edge of the invasion front (“pulled wave”). Instead, the disease invasion is
driven by the whole of the front (“pushed wave”) (Stokes 1976; Lewis and Kareiva
1993). In particular, the disease spread may be maximum for intermediate prevalences
because of the conditional preferences (similar to weak and strong Allee effects where
population growth is strongest at intermediate densities). By contrast, dynamics of
pulled waves are independent from the nonlinearities behind the leading edge of the
front.
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5.2.2 Bistable case

In the bistable case (requiringR2
0 < 1), the disease either invades or retreats, depending

on parameter values. More specifically, travelling waves may have negative speeds,
meaning that the disease retreats.

In an epidemiological context, such a “front reversal” has been shown to occurwhen
host population dynamics in the absence of disease are bistable, due, for instance, to a
strong Allee effect in the host (Hilker et al. 2005, 2007). However, to our knowledge,
such a phenomenon has seldom (Bocharov et al. 2016) been shown to occur when
bistability is due solely to the epidemiological dynamics.

5.3 Biological implications

Although conditional vector preferences might occur in human and animal diseases,
they have so far been shown mainly in plant diseases (Gandon 2018). Therefore, we
now discuss plant diseases more specifically.

Plant diseases are a main threat to global food security (Ristaino et al. 2021). Many
plant diseases are caused by pathogens (viruses, bacteria and others) that are transmit-
ted by insect vectors such as aphids, whiteflies, and others (Eigenbrode et al. 2018).
Infected vectors can be attracted to uninfected plants. This is for instance the case for
aphids, Rhopalosiphum padi, infected by the Barley yellow dwarf virus (BYDV) (Ing-
well et al. 2012). In his review of evidence for conditional vector preferences, Gandon
(2018) identified the volatile compounds emitted by infected plants as an attraction
mechanism for (uninfected) vectors. For instance, plants infected by the Cucumber
mosaic virus (CMV) or the Tomato chlorosis virus (ToCV) produce volatiles that
attract aphids or whiteflies (Fereres et al. 2016). Note also that vectors can be attracted
to infected plants by visual cues, such as, for instance, yellow leaves.

Since the basic reproductive number of the pathogen (R2
0) is proportional to u (the

preference of uninfected vectors for infected hosts), a plant variety that emits fewer
volatiles could be considered resistant to disease. When visual cues are responsible
for vector preferences, a plant variety that expresses fewer symptoms, and is therefore
less attractive to uninfected vectors, could also be considered resistant. Deployment
of such resistant hosts might make it possible to obtain R2

0 < 1. We have shown that
u ≥ 1 (a preference of uninfected vectors for infected hosts) ensures disease extinction
in this case (R2

0 < 1), since bistability requires u < 1. This means that breeding for
varieties that emit, when infected, a concentration of volatiles that is lower than that
of standard varieties is a possible strategy for the control of vector-borne diseases (in
combination with other strategies such as roguing - i.e., removing - infected plants,
for instance).

5.4 Mathematical prospects

An alternative for modelling vector preference could be density-dependent advection
(in analogy to preytaxis, this could perhaps be called “hosttaxis”). It has been shown
that preytaxis in the presence of disease, where predators are attracted to or repelled by
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infected prey, can speed up or even lead to irregularly fluctuating travellingwaves (Bate
and Hilker 2019). While Chamchod and Britton (2011) considered a “hosttaxis” term
in their model, it was only a vector bias toward infected hosts, regardless of whether
the vector carries the pathogen or not. Modelling conditional vector preferences with
a hosttaxis term is beyond the scope of this paper and is left for future research.
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A Side results on the non-spatial model

A.1 CaseR2
0 = 1 (boundary case)

IfR2
0 = 1, or equivalently

u = ρ

βθ
,

then C = 0 and i∗ = −B/A. Using the above expression of u yields

i∗ = 1 − 1

(a − 1)
(

βθ
(1+θ)ρ

− 1
) .

If a = 1, the endemic equilibrium does not exist. In what follows, we assume a �= 1.
Let the fraction of susceptible hosts at equilibrium be

s∗ = 1

(a − 1)
(

βθ
(1+θ)ρ

− 1
) .

We have:

s∗ > 0 ⇔
⎧⎨
⎩

βθ
(1+θ)ρ

> 1 if a > 1,

βθ
(1+θ)ρ

< 1 if a < 1.

Assuming s∗ > 0, s∗ < 1 is equivalent to

(a − 1)

(
βθ

(1 + θ)ρ
− 1

)
> 1.
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Two cases can then be distinguished:

• If a > 1, s∗ < 1 is equivalent to

βθ

(1 + θ)ρ
− 1 >

1

a − 1
⇔ βθ

(1 + θ)ρ
>

a

a − 1
.

• If a < 1, s∗ < 1 is equivalent to

(
1 − βθ

(1 + θ)ρ

)
(1 − a) > 1 ⇔ 1 − βθ

(1 + θ)ρ
>

1

1 − a
⇔ − βθ

(1 + θ)ρ
>

a

1 − a
,

which is impossible.

Therefore, 0 < s∗ < 1 if and only if

a > 1 and
βθ

(1 + θ)ρ
>

a

a − 1
> 1. (16)

A.2 CaseR2
0 > 1

To derive the expression of the endemic equilibrium, we consider three cases: a = 1,
0 < a < 1 and a > 1.
Case a = 1. If a = 1, then A = 0 and

i∗ = −C

B
.

Since R2
0 > 1,

B = −
(
(1 + θ) u + R2

0 − 1
)

< 0.

Therefore,

i∗ = R2
0 − 1

(1 + θ) u + R2
0 − 1

.

We have 0 < i∗ < 1.
Case 0 ≤ a < 1. Since

B = −
((

(1 + θ) u + R2
0 − 1

)
a + (1 − a)

)
,

we deduce that B < 0. Then, we have three sub-cases to consider:

• If u > u∗, then A < 0. The relevant root is therefore the largest:

1

2A

(
−B − √

�
)

,
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Table 1 The component i∗ of
the endemic equilibrium in the
specific caseR2

0 > 1, expressed
as a function of A, B, C and
� = B2 − 4AC

0 < a < 1 a = 1 a > 1

u < u∗ 1
2A

(
−B − √

�
)

−C
B

1
2A

(
−B − √

�
)

u = u∗ −C
B −C

B −C
B

u > u∗ 1
2A

(
−B − √

�
)

−C
B

1
2A

(
−B − √

�
)

since the other root is negative.
• If u = u∗, A = 0. We obtain

i∗ = R2
0 − 1

R2
0 − 1 + 1

a

. (17)

We have 0 < i∗ < 1.
• If u < u∗, then A > 0. The relevant root is therefore the smallest:

1

2A

(
−B − √

�
)

,

since both roots are positive.

Case a > 1. We again distinguish three sub-cases:

• If u > u∗, then A > 0 and B < 0. The relevant root is therefore the smallest:

1

2A

(
−B − √

�
)

,

since both roots are positive.
• If u = u∗, A = 0. We again find expression (17).
• If u < u∗, then A < 0. The relevant root is therefore the largest:

1

2A

(
−B − √

�
)

,

since the other root is negative.

These results are summarized in Table 1.

A.3 CaseR2
0 < 1

We here focus on the necessary condition � = B2 − AC > 0 for the existence of two
endemic equilibria in the case R2

0 < 1. Using the notations X = u(1 + θ) − 1 and
Y = R2

0 − 1 (Eq. 10) yields the following expression of � as a quadratic function of
a:

� = (X − Y )2a2 + 2(X(1 + Y ) + Y (1 + X))a + 1.
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Since (X − Y )2 > 0, this parabola has a U-shape. We also have �(0) = 1 > 0.
Therefore, either there are two positive roots, a−

c and a+
c , or there are none. In the

latter case, � > 0 regardless of the value of a. In case there are two roots, the largest
one,

a+
c = −((X(1 + Y ) + Y (1 + X)) + 2

√
XY (1 + X)(1 + Y )

(X − Y )2
,

can also be expressed as

a+
c =

(√−X(1 + Y ) + √−Y (1 + X)

X − Y

)2

.

Similarly, a−
c can be expressed as

a−
c =

(√−X(1 + Y ) − √−Y (1 + X)

X − Y

)2

.

Since 1 + X = u(1 + θ) > 0, 1 + Y = R2
0 > 0, and Y = R2

0 − 1 < 0, the existence
of two conjugate roots requires X = u(1 + θ) − 1 < 0, or equivalently u < u∗.

We now focus on the condition a > a+
c (implying � > 0) since it happens to

coincide with the separatrix we numerically obtained in the parameter space (Fig. 3).
Let us express a+

c as a function of the original parameters:

a+
c =

⎛
⎝
√

−(u(1 + θ) − 1)R2
0 +

√
−(R2

0 − 1)u(1 + θ)

u(1 + θ) − R2
0

⎞
⎠

2

, (18)

or equivalently:

a+
c (u) :=

⎛
⎝
√(

1 − u
u∗
)R2

0 +
√

(1 − R2
0)

u
u∗

R2
0

u∗ (uc − u∗)

⎞
⎠

2

.

Assuming a+
c (u) is defined for all u ∈ [0, uc] implies uc < u∗.

In particular, since uc is such that R2
0 = 1, we have

a+
c (uc) = 1

1 − uc
u∗

=: ac. (19)

The condition a > ac (implying a > 1) is equivalent to the condition we obtained for
the existence of an endemic equilibrium in the boundary case R2

0 = 1, see Eq. (16).
Thismeans that in Fig. 3, the lineR2

0 = 1 and the separatrix between the “disease-free”
and “bistability” regions meet at the point (uc, ac).
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B Side results on the spatial model

B.1 Existence of aminimum linear spreading speed

The function of the form ξ �→ exp(−ξs)y is a solution of system (3) linearised around
the disease-free equilibrium if and only if scy = Ms y, in which

Ms =
(−ρ β

uθ −1 + s2

)
,

see Eq. (11). Since Ms is irreducible and, for all s > 0, essentially non-negative, the
Perron–Frobenius theorem provides the existence of a unique eigenvalue κs of Ms

associated to a positive eigenvector (Crooks 1996, Theorem 1.4). Therefore, sc = κs .
Since c = κs/s is the dominant eigenvalue of 1

s Ms , c is a convex function of s (Cohen
1981).

B.2 Quasi-steady-state approximation

In this section, we make a quasi-steady-state approximation to reduce our model to a
single dimension (similarly to Hamelin et al. 2016).

Model (3) can be equivalently expressed as:

1

ρ
iτ = β

ρ
v

a(1 − i)

a(1 − i) + i
− i,

vτ = θ(1 − v)
ui

ui + 1 − i
− v + vξξ .

(20)

We consider the case where the infected vector removal rate (m + l) is much lower
than the removal rate of infected hosts r , so ρ = r/(m + l) � 1. This might happen
in plant viruses if roguing occurs frequently relative to the vector lifespan (r � m),
and the virus is persistent in the vector (l = 0).

We apply the quasi-steady-state approximation to the first equation of (20) to yield
the fraction of infected hosts i directly in terms of the fraction of infected vectors v as

0 < i�(v) :=

(
β
ρ
v + 1

)
a −

√((
β
ρ
v − 1

)2
a + 4β

ρ
v

)
a

2(a − 1)
< 1.

(It can be easily shown that the other root is greater than unity.)
This yields

vt ≈ θ(1 − v)
ui�(v)

ui�(v) + 1 − i�(v)
− v + vξξ =: W (v) + vξξ . (21)
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Fig. 9 Exact linear spreading speed (c�, in red), as given by numerically solving Eq. (15), and approximated
linear spreading speed (c∗, in blue), as given by Eq. (23) in the monostable case. Our quasi-steady-state-
approximation (QSSA) assumes ρ � 1. It is therefore unsurprising that the QSSA performs badly when
ρ ≤ 10. However, the approximation does not seem to deviate much from the exact solution for small
spreading speeds and ρ ≥ 1. This might explain why the QSSA correctly locates the c = 0 curve in Fig. 8.
Here, β = 2.4ρ, other parameter values as in Fig. 1 (colour figure online)

B.2.1 Monostable case (R2
0 > 1)

It is useful to notice that in the monostable case (R2
0 > 1), W (0) = 0, W (v∗) = 0,

and W (v) > 0 for all v ∈ (0, v∗). It is well known that if

W (v)

v
< W ′(0) for all v ∈ (0, v∗), (22)

the spreading speedof thewave is linearly determined (Stokes 1976;Lewis andKareiva
1993):

c∗ = 2
√
W ′(0) = 2

√
β

ρ
θu − 1 = 2

√
R2

0 − 1. (23)

Figure 9 compares the linear speed under the QSSA (Eq. 23) with the exact linear
spreading speed given by Eq. (15). The QSSA performs well for large values of ρ, but
performs increasingly badly for smaller values of ρ that do not meet the assumption
ρ � 1 behind the QSSA.

Note, however, that if condition (22) is not satisfied, the spreading speedmay not be
linearly determined. A sufficient condition for condition (22) not to hold isW ′′(0) > 0.
We have

W ′′(0) = −
2β

ρ
uθ

(
(1 + (u − 1)a)

β
ρ

+ a
)

a
,

and so W ′′(0) > 0 is equivalent to

u <

β
ρ
(a − 1) − a

a β
ρ

.
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Or equivalently,

(u − 1)
β

ρ
+ 1 < 0 and a >

β
ρ

−((u − 1)β
ρ

+ 1)
=: ã(u). (24)

We also have

ã(uc) =
β
ρ

β
ρ

− 1
θ

− 1
= 1

1 − uc
u∗

= ac,

see Eq. (19). This means that the curve separating pulled waves (linear speed)
with pushed waves (nonlinear speed) in the parameter plane “originates” at (uc, ac)
(Fig. 10).

B.2.2 Bistable case (R2
0 < 1)

In the bistable case (R2
0 < 1), the wave speed is not linearly determined. However, it

is well known (Fife and McLeod 1977) that

sign(c∗) = sign

(∫ v∗
2

0
W (v)dv

)
, (25)

where v∗
2 is the stable nontrivial equilibrium of (21). Hence, the travelling wave has

positive (negative) speed when the net area between the growth dynamicsW (v) of the
approximated system (21) and the horizontal axis in the range between the disease-free
state and the stable endemic state is positive (negative, respectively).

Fig. 11 compares the linear spreading speedwith the actual (numerically computed)
spreading speed under the QSSA. It shows that in the bistable case (u < uc), the
spreading speed can be either negative or positive. In the monostable case (u > uc),
the actual spreading speed significantly deviates from the linear speed for u close to
uc, but the actual speed converges to the linear speed as u increases.

Fig. 12 shows that the actual spreading does not depend on a when it is well approx-
imated by the linear speed (for u > 0.3), while it increasingly depends on a as u
decreases from u = 0.3. The dependency is greater in the bistable case (u = 0.15)
than in the monostable pushed case (u = 0.2). As expected, the spreading speed is
non-decreasing with a.
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Fig. 10 Two-parameter bifurcation analysis under the quasi-steady-state approximation (QSSA), i.e., model
(21). The black line connecting (uc, 0) to (uc, ac) is the boundary between the monostable case with linear
speed and the disease-free region. The blue line separates the disease-free region from the bistability region,
as given by Eq. (18). The red line separates the monostable/pushed wave from the monostable/pulled wave
(linear speed) region, as given by Eq. (24). Note that Eq. (24) only depends on β/ρ, while Eq. (18) only
depends on θ and β/ρ through R2

0 = βθu/ρ. Parameter values: θ = 2 and β/ρ = 2.4. Note, however,
that ρ must be much greater than 1 for the QSSA to hold (colour figure online)

Fig. 11 Comparing the linear wave speed, given by Eq. (23), with the actual (numerically computed) wave
speed under the QSSA, i.e., model (21). Here, ρ = 100, β = 2.4ρ, other parameter values as in Fig. 1
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Fig. 12 Shows whether and how the actual (numerically computed) spreading speed depends on a. This is
for the QSSA, i.e., model (21), but the results are very similar in the original model (3), for ρ = 1. Here,
ρ = 100, β = 2.4ρ, other parameter values as in Fig. 1
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