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The timing of harvesting is a key instrument in managing and exploiting biological populations and
renewable resources. Yet, there is little theory on harvest timing, and even less is known about the impact
of different harvest times on the stability of population dynamics, even though this may drive population
variability and risk of extinction. Here, we employ the framework proposed by Seno to study how har-
vesting at specific moments in the reproductive season affects not only population size but also stability.
For populations with overcompensation, intermediate harvest times tend to be stabilizing (by simplifying
dynamics in the case of unimodal maps and by preventing bubbling in the case of bimodal maps). For
populations with a strong Allee effect, however, intermediate harvest times can have a twofold effect.
On the one hand, they facilitate population persistence (if harvesting effort is low). On the other hand,
they provoke population extinction (if harvesting effort is high). Early harvesting, currently considered
common sense to take advantage of compensatory effects, may cut into the breeding stock when the pop-
ulation has not yet surpassed the critical Allee threshold. The results in this paper highlight, for the first
time, the crucial interplay between harvest timing and Allee effects. Moreover, they demonstrate that
harvesting with the same effort but at different moments in time can dramatically alter the impact on
the population.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction ing grounds [3]. The management of waterfowl in North America
The sustainable exploitation of natural resources is based on
their capability to ‘renew’ themselves [1]. Harvest and manage-
ment theory is therefore largely concerned with the population re-
sponse to the removal of individuals or resources [2]. Harvest
programmes can differ in their quota or effort, i.e. the number of
individuals or proportion of the population taken, but also in their
selectiveness by targeting certain spatial areas, sexes, or age and
size groups.

A key question of both theoretical and applied interest is the
timing of the harvest (or other forms of interventions). For exam-
ple, marine resources such as fish stocks may be protected from
overexploitation by temporary closures of fisheries. In terrestrial
ecosystems, large herbivore populations have been expanding
across Europe and North America, and they are often managed dur-
ing specified hunting seasons. Another, particularly illuminating
example are species with distinctly seasonal dynamics such as
migratory birds, which may be hunted in their wintering or breed-
has a long tradition and is well documented in the literature [4–
6]. One of the reasons for this research interest is the following:
If any management or harvesting programme is to take advantage
of population compensation, the timing of interventions relative to
density-dependent processes is essential [7,1,2].

A prevailing view and the usual practice in wildlife manage-
ment is that harvesting should occur after breeding and precede
periods of high natural mortality, i.e. early in the autumn [3,8].
This is because the population may compensate the removal of
individuals by increased survival (compensatory mortality) or in-
creased productivity (compensatory natality), e.g. due to less com-
petition for resources. Removing individuals early thus improves
conditions for the remaining ones and allows them to gain greater
reproductive value. Also, in cervid management harvesting juve-
niles (or males) rather than adult females is considered not only
to retain a high yield (and thus population size), but also to dam-
pen the variance in the yield (and thus population variability).
However, hunters are often reluctant to shoot juveniles (‘‘hunting
Bambi’’), and the scientific evidence is scattered (see the review
by Milner et al. [9] and references therein).

In the theoretical literature, little is known about the role of
harvest timing [10,11,7,3]. The order of harvesting in relation to
other events within the life cycle has been shown to profoundly
impact the population [12,13,7,3,1,14–16]. This points out
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the potential importance of the harvest timing. Yet, we know of
only three studies [7,17,18] that allow for variable harvest timings
at specific moments in the seasons. The mathematical models in
these references are ‘semi-discrete’ in time, that is, they couple
continuous processes with discrete events, thus giving rise to hy-
brid differential equations with periodic or impulsive functions.
Moreover, they respectively consider constant yield harvesting,
stage structure and environmental fluctuations, which further
complicate the models. Here, we employ a simple mathematical
model that has been recently proposed by Seno ([19], see also
[20,21]). It is based on a single difference equation and
yet allows to study the impact of harvest timing.

The Seno model considers constant effort harvesting (some-
times also called proportional harvesting), which is one of the most
usual strategies in fisheries [22,23] and pest control [24,19,25].
Many authors have studied the effects of constant effort harvesting
on population size in discrete-time models with overcompensatory
population dynamics; see, e.g., [26,1,14,13,3,7,27,19,23,25]. Most
of these papers focus on the paradoxical increase of population size
in response to an increasing mortality (hydra effect) [26,28].

When taking into account the harvest timing, the Seno model
predicts that compensatory effects on population size are the lar-
ger the earlier the harvesting takes place. It thus arrives at the
same conclusion as other models [7,1,3,2]. However, population
size is not the only important factor for a sustainable management
of an exploited population or for the control of a pest species. An-
other key point is the stability and degree of complexity of the sys-
tem; population fluctuations can make the population more prone
to extinction by stochastic events, especially in small populations
[29].

Although harvesting usually has a stabilizing effect on popula-
tion dynamics [30,31,13], some recent empirical studies demon-
strate the potential for increased mortality to lead to instability
in plant, insect and fish populations [32,33,25]. Also, a recent the-
oretical paper proves that instabilities as a result of increased har-
vesting effort can be explained in a one-dimensional discrete
model without considering external noise or changes in the demo-
graphic parameters, if survivorship of adults is allowed [27]. For
discrete-time models with dimension higher than one, this phe-
nomenon has been explored too; for example, the three-dimen-
sional model of the flour beetle Tribolium castaneum analyzed by
Costantino et al. [34], and the two-dimensional model employed
by Zipkin et al. [35,25]. In both cases, an increasing adult mortality
can destabilize the system. This phenomenon is linked to the
mathematical concept of bubbling; for a precise definition, see
[27, Definition 3].

An important aspect is whether the stability of the system de-
pends on the harvest timing, and how this dependence affects
the qualitative behavior of the population. In this paper, we use Se-
no’s model to show how the timing of harvesting can affect the sta-
bility properties of a population. One of the main conclusions of
our study is that an appropriate harvest timing may avoid destabi-
lizing effects in the population, and thus reduce the risk of extinc-
tion due to high variability of population size. We also pay special
attention to the role of Allee effects, which have been completely
ignored so far in this context.
2. The Seno model

Consider a discrete-time single-species population model

xnþ1 ¼ f ðxnÞ ¼ xn gðxnÞ; ð2:1Þ

where xn 2 ½0;1Þ is the population size at generation n 2 N. and
f ; g : ½0;1Þ ! R are respectively the population production and
the per-capita production. A typical example is the unimodal Ricker
map f ðxÞ ¼ xerð1�xÞ, with r > 1 [36], but we will also allow for survi-
vorship of adults from one generation to the next (giving rise to bi-
modal maps) and for strong Allee effects (giving rise to multiple
equilibria).

We now introduce the harvesting model proposed by Seno (see
[19] and references therein). This model assumes that there is a
specific season of length one, in which individuals accumulate en-
ergy for reproduction. In this paper, we will use this season inter-
changeably with ‘reproductive season’. Harvesting is assumed to
take place at a moment h (0 6 h 6 1) within the season. Before h,
the population production depends on xn. Then the harvesting re-
moves a fraction from the population, with c 2 ½0;1Þ being the con-
stant harvesting effort. After h, the population production depends
on ð1� cÞxn. The population production is then assumed propor-
tional to the time period before/after harvesting. The model reads
(cf. [19, Eq. (1)]):

xnþ1 ¼ ð1� cÞxn hgðxnÞ þ ð1� hÞgðð1� cÞxnÞð Þ: ð2:2Þ

Since f ðxÞ ¼ xgðxÞ, we rewrite (2.2) as

xnþ1 ¼ hð1� cÞf ðxnÞ þ ð1� hÞf ðð1� cÞxnÞ :¼ FhðxnÞ: ð2:3Þ

There are two special cases. Firstly, the case h ¼ 0 means that har-
vesting occurs at the beginning of the specific season, and then
we get F0ðxÞ ¼ f ðð1� cÞxÞ; this case has received considerable
attention ([26,37,27,23] and references therein). Second, the case
h ¼ 1 gives F1ðxÞ ¼ ð1� cÞf ðxÞ. The only difference between the
cases h ¼ 0 and h ¼ 1 is census timing [14]. Actually, if we agree
to measure the population just after reproduction, then the case
h ¼ 1 may be identified with h ¼ 0. From a mathematical point of
view, both cases exhibit the same dynamics because they are topo-
logically conjugated [27]. From a biological point of view, the pop-
ulation dynamics results from the composition of only two separate
processes (i.e., harvesting and reproduction), and any difference in
population size only depends on when the population is sampled
[12].

However, for the mathematical analysis, it is useful to have in
mind the case h ¼ 1 and to realize that every particular choice of
Fh is a convex combination of F0 and F1:

FhðxÞ ¼ hF1ðxÞ þ ð1� hÞF0ðxÞ: ð2:4Þ

Our main aim in this paper is to study how the harvesting time
parameter h affects the dynamics of model (2.3).

3. Compensatory models

In this section, we assume that f ðxÞ ¼ xgðxÞ, where g is continu-
ously differentiable and satisfies the following conditions:

(i) g0ðxÞ < 0 for all x > 0.
(ii) gð0Þ > 1.

(iii) limx!1gðxÞ ¼ d < 1.

Conditions (i)–(iii) are typical of single-species models with contest
and scramble competition [38] and lead to under- and overcompen-
sating stock–recruitment curves, respectively [22].

Our first observation is that overharvesting provokes extinction.
The critical value of the harvesting effort c is independent of the
timing h.

Proposition 3.1. Assume that conditions (i)–(iii) hold. Then Eq. (2.3)
has a (unique) positive equilibrium if and only if
c < c� :¼ 1� 1
gð0Þ : ð3:1Þ

If c P c�, then all solutions of (2.3) converge to zero.
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Proof. Denote FhðxÞ ¼ xghðxÞ. Then,

ghðxÞ ¼ hð1� cÞgðxÞ þ ð1� hÞð1� cÞgðð1� cÞxÞ:

This expression and condition (i) imply that g0hðxÞ < 0 for all x > 0.
Since

lim
x!1

ghðxÞ ¼ ð1� cÞd 6 d < 1;

Eq. (2.3) has a unique positive equilibrium if and only if ghð0Þ > 1,
which is equivalent to (3.1).

If c P c� then FhðxÞ < x for all x > 0, and therefore all solutions
of (2.3) converge to zero. h

For example, for the Clark–Ricker map
f ðxÞ ¼ axþ ð1� aÞxerð1�xÞ, we have gð0Þ ¼ aþ ð1� aÞer , and
therefore

c� ¼ 1� 1
aþ ð1� aÞer

:

Note that the usual Ricker map corresponds to a ¼ 0 and
c� ¼ 1� e�r .

Our next result shows that the size of the positive equilibrium is
a monotone function of h.

Proposition 3.2. Assume that conditions (i)–(iii) hold.

If 0 < h1 < h2 < 1, then F1ðxÞ < Fh2 ðxÞ < Fh1 ðxÞ < F0ðxÞ for all
x > 0 and c 2 ð0;1Þ. As a consequence, for a fixed c < c� the positive
equilibrium KcðhÞ is a decreasing function of h 2 ½0;1�, that is,

0 < h1 < h2 < 1) Kcð0Þ > Kcðh1Þ > Kcðh2Þ > Kcð1Þ: ð3:2Þ
Proof. Since F0ðxÞ ¼ xð1� cÞgðð1� cÞxÞ; F1ðxÞ ¼ xð1� cÞgðxÞ, and g
is decreasing, it follows that F1ðxÞ < F0ðxÞ for all x > 0 and
c 2 ð0;1Þ. By (2.4), Fh is a convex combination of F0 and F1, from
which it is clear that F1ðxÞ < Fh2 ðxÞ < Fh1 ðxÞ < F0ðxÞ if
0 < h1 < h2 < 1.

Next, since KcðhÞ is the nontrivial intersection of the graph of Fh

and the line y ¼ x, the inequalities (3.2) follow immediately. h

Proposition 3.2 states that if the positive equilibrium of (2.3) is
asymptotically stable, and we aim to maximize the average popu-
lation size, then the optimal harvesting strategy is h ¼ 0, that is,
harvesting at the beginning of the reproductive period. See Fig. 1.
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Fig. 1. Fixed points of FhðxÞ (equilibria of (2.3)) for different harvesting times
h ¼ 0;1=2;1 (solid lines from above to below), corresponding to harvesting early, in
the middle and at the end of the season. The harvesting effort is c ¼ 1=3. The dashed
curve is the (unharvested) Ricker map f ðxÞ ¼ xe3ð1�xÞ.
In the case of undercompensatory models such as the Beverton–
Holt equation [39], the positive equilibrium is globally stable for
c < c�, and hence, according to Propositions 3.1 and 3.2, harvest
timing only affects the population size.

In the remainder of this Section, we focus on overcompensatory
models, which can exhibit unstable equilibria. We address the
question how the harvesting effort c and the harvesting time h af-
fect the stability properties of the positive equilibrium KcðhÞ of
(2.3). This study will give us a hint how to choose an appropriate
harvesting time, in order to avoid some undesirable effects of
harvesting.

As we have mentioned before, the maps F0 and F1 are topolog-
ically conjugated. One of the consequences is that the positive
equilibrium Kcð0Þ of F0 is asymptotically stable if and only if
Kcð1Þ is asymptotically stable for F1 (see [27]). However, for a gen-
eral h 2 ð0;1Þ the map Fh is not topologically conjugated to F0 and
F1. Even though we consider only two processes (harvesting and
reproduction) [12–14], harvesting during the season (but neither
right at the beginning nor at the end) induces different stability
properties. This is because the harvest timing influences density-
dependent effects. We now investigate this general case for some
usual population models, distinguishing between uni- and bimodal
maps.
3.1. Unimodal maps

We begin with the case of unimodal maps. If the positive equi-
librium of (2.1) is unstable, then it is well known that increasing
harvesting tends to stabilize the equilibrium after a series of peri-
od-halving bifurcations [40]. Actually, increasing harvesting can-
not destabilize an asymptotically stable equilibrium of (2.1) (see,
e.g., [27]).

We focus our attention on the Ricker map f ðxÞ ¼ xerð1�xÞ. In the
absence of harvesting, the equilibrium K ¼ 1 of (2.1) is asymptot-
ically stable if and only if r 6 2. Hence, if r > 2, the equilibrium is
unstable, but harvesting in form of (2.3) can have a stabilizing
effect. Figs. 2 and 3 in [19] suggest that the harvesting effort nec-
essary for stabilization is less for values of h 2 ð0;1Þ than for h ¼ 0
and h ¼ 1. In the following, we prove that this claim is indeed
true.

The next proposition was proved in [40]. As usual, we denote
F2 :¼ F � F; F3 :¼ F � F2 and so on.
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Fig. 2. Stability diagram for the positive equilibrium KcðhÞ of (2.3) with
f ðxÞ ¼ xe4ð1�xÞ in the plane ðc; hÞ. Note that intermediate harvest times h 2 ð0;1Þ
can be stabilizing.
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Fig. 3. Bifurcation diagram of population model (2.3) for varying harvesting times
h 2 ½0;1�. The thin red line represents the average population size after reproduc-
tion, which coincides with the equilibrium in the stable case. There are two flip
bifurcation points at h ¼ h1 and h ¼ h2. The underlying population dynamics is the
Ricker map f ðxÞ ¼ xe4ð1�xÞ and the harvesting effort c ¼ 0:7. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Proposition 3.3. Assume that r > 2. Then the positive equilibrium
Kcð0Þ of (2.3) with h ¼ 0 and f ðxÞ ¼ xerð1�xÞ is asymptotically stable if
and only if

c1 :¼ 1� e2�r
6 c < 1� e�r ¼ c�: ð3:3Þ

Moreover, when (3.3) holds, limn!1Fn
0ðxÞ ¼ Kcð0Þ for all x > 0.

Of course, the conclusions of Proposition 3.3 also apply to h ¼ 1.
For a general h 2 ð0;1Þ, however, it is difficult to get an explicit con-
dition similar to (3.3). But we can prove that choosing a value of h
in the interior of ½0;1� tends to be stabilizing, as Fig. 2 suggests.

Proposition 3.4. Assume that r > 2. Then the positive equilibrium
KcðhÞ of (2.3) with h 2 ð0;1Þ and f ðxÞ ¼ xerð1�xÞ is asymptotically
stable if condition (3.3) holds.
Proof. The statement of the proposition is proved if we show that

F 0hðKcðhÞÞ > �1 for all h 2 ð0;1Þ and c 2 ½c1; c
�Þ: ð3:4Þ

Elementary computations show that if f ðxÞ ¼ xerð1�xÞ then the only
critical point of f 0 is P ¼ 2=r, and f 0ðPÞ is a strict minimum of f 0. In
other words,

f 0ðxÞ > f 0ðPÞ for all x > 0; x – P: ð3:5Þ

Consider h ¼ 1, and the map F1ðxÞ ¼ ð1� cÞf ðxÞ. The positive equi-
librium Kcð1Þ becomes asymptotically stable at c ¼ c1 ¼ 1� e2�r ,
for which F 01ðKc1

ð1ÞÞ ¼ �1.
Notice that for c1 the positive equilibrium Kcð1Þ is precisely

P ¼ 2=r. Indeed, if x > 0 and c ¼ c1, then

F1ðxÞ ¼ x() ð1� c1Þerð1�xÞ ¼ 1() e2�rerð1�xÞ ¼ 1()

e2�rx ¼ 1() x ¼ 2
r
¼ P:

Hence,

ð1� c1Þf 0ðPÞ ¼ F 01ðKc1
ð1ÞÞ ¼ �1: ð3:6Þ

We claim that

x 2 ðKcð1Þ;Kcð0ÞÞ )minfF 00ðxÞ; F
0
1ðxÞg > �1;

8 h 2 ð0;1Þ and c 2 ½c1; c
�Þ:

By Proposition 3.2, and taking into account that F 0h is a convex com-
bination of F 00 and F 01, this claim implies that (3.4) holds.

We now distinguish the cases c ¼ c1 and c > c1.
(i) c > c1. If f 0ðxÞ > 0 then F 01ðxÞ ¼ ð1� cÞf 0ðxÞ > 0. If f 0ðxÞ < 0
then, since c > c1, we get from (3.5) and (3.6) that
F 01ðxÞ ¼ ð1� cÞf 0ðxÞ > ð1� c1Þf 0ðxÞP ð1� c1Þf 0ðPÞ ¼ �1:

Analogously, if f 0ðð1� cÞxÞ > 0 then F 00ðxÞ ¼ ð1� cÞ
f 0ðð1� cÞxÞ > 0. If f 0ðð1� cÞxÞ < 0 then

F 00ðxÞ ¼ ð1� cÞf 0ðð1� cÞxÞ > ð1� c1Þf 0ðð1� cÞxÞ
P ð1� c1Þf 0ðPÞ ¼ �1:
(ii) c ¼ c1. In this case, Kc1
ð1Þ < x < Kc1

ð0Þ implies that
x–Kc1

ð1Þ ¼ P and ð1� c1Þx–ð1� c1ÞKc1
ð0Þ ¼ Kc1

ð1Þ ¼ P.
Therefore, f 0ðxÞ > f 0ðPÞ and f 0ðð1� c1ÞxÞ > f 0ðPÞ. With this
remark in mind, we have:
F 01ðxÞ ¼ ð1� c1Þf 0ðxÞ > ð1� c1Þf 0ðPÞ ¼ �1;

F 00ðxÞ ¼ ð1� c1Þf 0ðð1� c1ÞxÞ > ð1� c1Þf 0ðPÞ ¼ �1: �
For other related population models (that are different from the
Ricker map but still overcompensatory), our numerical simulations
suggest that the following conjecture is true.

Conjecture 3.5. Assume that conditions (i)–(iii) in the statement of
Proposition 3.1 hold, and that f is a unimodal map. If the positive
equilibrium Kcð0Þ of (2.3) with h ¼ 0 is asymptotically stable, then
KcðhÞ is asymptotically stable for (2.3) for all h 2 ð0;1Þ.

For example, for the Maynard Smith (or generalized Beverton–
Holt) map [41,42], defined by f ðxÞ ¼ rx=ð1þ xbÞ; r > 1; b P 1, it is
easy to prove (see Appendix S1 in [26] and Theorem 1 in [40]) that
the equilibrium Kcð0Þ is globally asymptotically stable if b > 2 and

1� b
rðb� 2Þ 6 c < 1� 1

r
: ð3:7Þ

However, the same arguments used in the proof of Proposition 3.4
do not seem to work to prove an analogous result for (2.3) with
h 2 ð0;1Þ.

A special case is the quadratic map f ðxÞ ¼ rxð1� xÞ, for which
the positive equilibrium of (2.3) becomes asymptotically stable at
the same critical harvest effort c, regardless the value of h 2 ½0;1�.

Indeed, the positive equilibrium

KcðhÞ ¼
ð1� cÞr � 1

ð1� cÞrð1� cþ chÞ

of (2.3) (with f being the quadratic map) is asymptotically stable if
and only if rð1� cÞ 6 3 (see also [19, p. 67]). This fact means that
increasing harvesting stabilizes the positive equilibrium, and that
the harvesting effort necessary to achieve this is independent of
the value of h, that is, of the harvesting time. Since a positive equi-
librium only exists when rð1� cÞ > 1, we have the following result:

Proposition 3.6. Assume that r > 3. Then the positive equilibrium
KcðhÞ of (2.3) with f ðxÞ ¼ rxð1� xÞ is asymptotically stable for all
values of h 2 ½0;1� if and only if

1� 3
r
6 c < 1� 1

r
: ð3:8Þ

Moreover, when (3.8) holds, all positive solutions of (2.3) converge to
KcðhÞ.

The stabilization properties may be very helpful for manage-
ment. For an example, we use the Ricker map f ðxÞ ¼ xe4ð1�xÞ. As-
sume that we plan to catch 70% from the stock (so c ¼ 0:7). For
h ¼ 0, Eq. (2.3) is chaotic, inducing a risk of extinction because
the population floor is very low (see Fig. 3). If we want to prevent
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82 B. Cid et al. / Mathematical Biosciences 248 (2014) 78–87
the population to reach low densities, an optimal strategy is fixing
the harvesting time at h ¼ h1 � 0:5855, where the equilibrium is
stabilized at a value of Kcðh1Þ � 1:609, which after harvesting be-
comes ð1� cÞKcðh1Þ � 0:483. If, on the contrary, we aim to control
a plague in order to avoid bursts of high density, a good harvesting
time is h ¼ h2 � 0:873, for which the equilibrium is still stable and
takes a value Kcðh2Þ � 0:943 < Kcðh1Þ. For h > h2, not only is the
equilibrium destabilized (leading to higher population variability
and thus to undesired high densities in some periods), but there
is also a slight increase in the mean population size, following a flip
bifurcation (see again Fig. 3).

3.2. Bimodal maps

In this section we deal with the case when f is a bimodal map in
Eq. (2.3). We shall focus on the Clark–Ricker map

f ðxÞ ¼ axþ ð1� aÞxerð1�xÞ; ð3:9Þ

where a 2 ð0;1Þ stands for the survival of adults from one period to
the next, and r > 0 is a growth parameter (see [43,27] for more de-
tails). Eq. (3.9) was suggested by Clark [22], and recently employed
by Shelton and Mangel [44] to study how fishing can magnify fluc-
tuations in fish populations, and by Yakubu et al. [23] to asses the
performance of constant effort fishing. See also [43,35,27].

Before describing our results for the Clark–Ricker map we note
that completely similar results are obtained for a modified May-
nard Smith map with adult survivorship

f ðxÞ ¼ axþ ð1� aÞ rx
1þ xb

:

This map was used by Milton and Bélair [45] to describe the growth
of bobwhite quail populations.

In the following we discuss the dynamics of Eq. (2.3) with f gi-
ven by (3.9), that is,

xnþ1 ¼ hð1� cÞ axn þ ð1� aÞxnerð1�xnÞ
� �

þ ð1� hÞð1� cÞ axn þ ð1� aÞxnerð1�ð1�cÞxnÞ
� �

: ð3:10Þ

Theorem 2 in [27] states that, for h ¼ 0, the positive equilibrium
of (3.10) is destabilized as the harvesting effort c is increased if and
only if the other parameters a and r satisfy the following
inequalities:

1� 2
r
< a <

er�3

2þ er�3 ; r > 3:

We choose r ¼ 4 as a case study, in such a way that the equilib-
rium of (3.10) with h ¼ 0 is destabilized by an increasing harvest-
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Fig. 4. Bifurcation diagrams of the bimodal map (3.10) with adult survival. (a) As c is incre
stable for all values of c. (b) For a fixed c ¼ 0:4, the equilibrium is stabilized at interme
ing if a 2 ð0:5;0:576Þ (see [27] for more details). Actually,
increasing harvesting leads to the emergence of bubbles (see [27,
Definition 3]). This is illustrated in the bifurcation diagram of
Fig. 4 (a) for h ¼ 0. Harvesting at an intermediate moment of the
season has the effect that the bubbles disappear; see Fig. 4 (a)
for h ¼ 0:5 (showing a stable equilibrium for all values of c).
Fig. 4 (b) shows the bifurcation diagram with the harvesting time
h as the bifurcation parameter. The stabilizing effect of intermedi-
ate harvesting times occurs in an interval ðh1; h2Þ, with h1 � 0:175
and h2 � 0:933.

Fig. 5 shows a stability diagram of (3.10) in the plane of
parameters ðc; hÞ. While for values of h either close to 0 or to 1
the equilibrium becomes unstable as c is increased, this is not
the case for intermediate values of h, for which the equilibrium
remains asymptotically stable (actually it seems to be globally
stable).

For low adult survivorships, harvesting can magnify fluctua-
tions in (3.10) with h ¼ 0 in a more dramatic way, destabilizing a
2-periodic orbit to a chaotic attractor [27]. For example, for
a ¼ 0:02; c ¼ 0:65 and r ¼ 4, Eq. (3.10) with h ¼ 0 is chaotic, with
a very low population floor. The bifurcation diagram in Fig. 6
shows that for an appropriate harvesting timing, Eq. (3.10) has a
2-periodic attractor. Even though the mean population size is low-
er, this dynamical behavior reduces the chance of extinction due to
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ased, a bubble is seen for h ¼ 0. But for h ¼ 1=2, the equilibrium seems to be globally
diate values of the harvesting time h. Other parameter values: r ¼ 4 and a ¼ 0:55.
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stochastic perturbations, since the minimum population sizes have
increased.

4. Models with Allee effect

In this section, we explore the influence of the harvesting time
parameter h in Eq. (2.3) when f describes the growth of a popula-
tion which exhibits a strong Allee effect [46]. The Allee effect de-
scribes positive density-dependence at small population sizes
(e.g., due to cooperation). At larger population sizes, negative den-
sity-dependence prevails (e.g., due to resource competition), and
the dynamics can be under- or overcompensatory. We will con-
sider both cases.

4.1. Modified Beverton–Holt model

We begin with a modified Beverton–Holt model

xnþ1 ¼
ax2

n

1þ bx2
n
; ð4:1Þ

where a and b are positive constants. This equation has been pro-
posed by Hoppensteadt [47], and more recently used in [48,23];
see also [49,50]. It is an example for undercompensatory population
dynamics with strong Allee effect.

The function

f ðxÞ ¼ ax2

1þ bx2 ð4:2Þ

is differentiable and increasing in ð0;1Þ. If a2 > 4b, then f has ex-
actly two positive fixed points K1 < K2. The smaller one is unstable,
as f 0ðK1Þ > 1, and the larger one is asymptotically stable, as
f 0ðK2Þ < 1. K1 is the so-called Allee threshold: solutions of (4.1) con-
verge to zero for initial conditions x0 < K1 or to the carrying capac-
ity K2 for initial conditions x0 > K1.

An important difference to the compensatory models studied in
Section 3 is that overharvesting populations with Allee effect leads
to extinction via a saddle–node bifurcation [51,23]. For h ¼ 0 and
h ¼ 1, it is easy to prove (see [23] and Proposition 4.1 below) that
there is a critical value c�h of the harvesting effort such that a pop-
ulation governed by (2.3) and (4.2) exhibits bistability if c < c�h, and
extinction occurs if c > c�h. For c < c�h, there are three equilibria
0 < K1ðc; hÞ < K2ðc; hÞ, with 0 and K2 being asymptotically stable
and K1 being unstable. For c ¼ c�h, the two positive equilibria coin-
cide: K1ðc�h; hÞ ¼ K2ðc�h; hÞ :¼ K�h, and F 0hðK

�
hÞ ¼ 1.

For h 2 ð0;1Þ, since Fh is increasing and a convex combination of
F0 and F1, it follows by continuity that there is a corresponding
critical value c�h such that extinction occurs if c > c�h. In contrast
to Proposition 3.1, this critical value does depend on the harvesting
time h. This is a novel result. Actually, the critical harvesting effort
attains its maximum value for h ¼ 0 and h ¼ 1, as the following re-
sult shows.

Proposition 4.1. Let us consider Eq. (2.3) with f given by (4.2). Then:
(a) The critical value of the harvesting time for a saddle–node
bifurcation to occur with h ¼ 0 and h ¼ 1 is
c�1 ¼ c�0 ¼ 1� 2
ffiffiffi
b
p

a
:

(b) If h 2 ð0;1Þ and c P c�1, then FhðxÞ < x for all x > 0. Thus,
c�h < c�1 ¼ c�0, for all h 2 ð0;1Þ.
Proof. The value of c�0 is immediately obtained from the equation
K1ðc;0Þ ¼ K2ðc;0Þ, which is equivalent to 4b ¼ ða� acÞ2. The value
of c�1 is also easily obtained; both values are equal because
F0ðxÞ ¼ f ðð1� cÞxÞ and F1ðxÞ ¼ ð1� cÞf ðxÞ are topologically
conjugated.

To prove statement (b) of the proposition, notice that for c ¼ c�1
the only positive equilibrium of F1 is K�1 ¼ 1=

ffiffiffi
b
p

, and the only
positive equilibrium of F0 is K�0 ¼ f ðK�1Þ ¼ a=ð2bÞ. Moreover,
K�0 – K�1 because a2 > 4b.

On the other hand, FiðxÞ < x for all x > 0; x – K�i ; i ¼ 0;1. Since
FhðxÞ is a convex combination of F0ðxÞ and F1ðxÞ, it follows that
FhðxÞ < x for all x > 0 and all h 2 ð0;1Þ. Thus, claim (b) is true for
c ¼ c�1. If c > c�1, then both F1ðxÞ and F0ðxÞ are less than x for all
x > 0, and therefore the same convexity argument applies to
conclude that FhðxÞ < x for all x > 0. h

Proposition 4.1 implies that harvesting at an intermediate mo-
ment h in the season makes the population more prone to extinc-
tion. This is illustrated in Fig. 7, which summarizes the dynamical
outcomes in the parameter plane ðc; hÞ.
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Fig. 8 reveals why intermediate harvesting times can induce
extinction. For low harvesting (Fig. 8a), both the carrying capacity
K2 and the Allee threshold K1 decline with later harvesting times.
However, they do so with different rates. The carrying capacity de-
creases quickly for early harvesting, but becomes less affected by
later harvesting, whereas the effect on the Allee threshold is vice
versa. In consequence, if we increase the harvesting moment h,
the carrying capacity and Allee threshold approach each other. If
we then increase the harvesting effort (Fig. 8b), the two equilibria
collide and annihilate each other. This results in a parameter range
of extinction for intermediate harvesting times, while the popula-
tion dynamics is still bistable for harvesting times early or late in
the season (Fig. 8c). Note that the population size at the (asymptot-
ically stable) carrying capacity increases with h for late harvesting
times, which is in contrast to all previous observations (cf. Propo-
sition 3.2 for compensatory maps without Allee effect).
4.2. Modified Ricker model

We now consider a population model with overcompensation
and Allee effect, namely,

xnþ1 ¼
ax2

n

1þ axn
erð1�xnÞ; ð4:3Þ

where a and r are positive constants. Eq. (4.3) is a Ricker model
modified with a positive density factor IðxÞ ¼ ax=ð1þ axÞ, and it
has been used by Schreiber [51] to model mate limitation. The
parameter a represents the carrying capacity of the population in
the absence of mate limitation multiplied by an individual’s effi-
ciency to find a mate [51, Section 2.1].

In this model, transition to extinction due to overharvesting
also takes place via a saddle–node bifurcation; cf. Fig. 9. This is
similar to the modified Beverton–Holt map considered before
and a consequence of the strong Allee effect. There are two differ-
ences, however, which can be related to the overcompensatory
dynamics of the modified Ricker map. Firstly, bistability does not
necessarily mean that two asymptotically stable equilibria coexist.
In general, the extinction equilibrium x ¼ 0 coexists with a non-
trivial attractor whose dynamics ranges between an asymptoti-
cally stable equilibrium and what seems to be a chaotic attractor
(cf. Fig. 9 at intermediate harvesting efforts).

Secondly, the complex dynamics of the nontrivial attractor can
interplay with the Allee threshold. This gives rise to the phenome-
non of essential extinction, which can occur for certain values of a
and r. The map f : ½0;1Þ ! 0;1Þ defined by

f ðxÞ ¼ ax2

1þ ax
erð1�xÞ ð4:4Þ

has a unique critical point c > 0, which is a global maximum of f.
Essential extinction occurs when f has two positive fixed points
K1 < K2, and f ðcÞ < K1. In this situation, for a randomly chosen ini-
tial condition, extinction occurs with probability one; however, the
set of initial conditions that do not lead to extinction is nonempty,
and define a chaotic repeller [51].

Thus, for the dynamics of model (4.3), there are three generic
possibilities: (monostable) extinction due to overharvesting; bista-
bility between extinction and (possibly complex) survival; and
essential extinction. The transition from essential extinction to
bistability takes place via a boundary collision [43,52]. The transi-
tion from bistability to extinction occurs, as in (4.1), via a saddle–
node bifurcation.
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We study the influence of the harvesting time parameter h on
the dynamics of (2.3) when f is defined by (4.4). Our first observa-
tion is that the same arguments used in the proof of Proposition 4.1
apply to demonstrate that intermediate values of h make the pop-
ulation more prone to extinction by overharvesting.

Next, our numerical simulations show that, as it occurs for the
overcompensatory models studied in Section 3, harvesting at an
intermediate value of h can stabilize the population dynamics (in
terms of simplifying them).

Finally, regarding the transition between bistability and essen-
tial extinction, we observe that the population can survive if har-
vesting occurs at an intermediate moment of the reproductive
season under the same harvesting strength for which there is
essential extinction for h ¼ 0 and h ¼ 1.

As a case study, we choose a ¼ 4 and r ¼ 4. For these values,
essential extinction is observed in model (4.3) (c.f. [51, p. 205]).
When constant effort harvesting is applied for h ¼ 0 or h ¼ 1 in
(2.3) with this function f, a catastrophe bifurcation switches the
dynamics from essential extinction to bistability at a value
c1 ¼ 0:09384. A tangent bifurcation leads to extinction at
c2 ¼ 0:91104. Between c1 and c2, the dynamics of the nontrivial
attractor ranges from chaos to asymptotic stability of the greatest
positive equilibrium. See Fig. 9.

We now fix three different values of the harvesting effort c to
illustrate the changes in the dynamics when the harvesting time
h is the bifurcation parameter.

� For low harvesting (c ¼ 0:09), intermediate values of h prevent
essential extinction (see Fig. 10).
� For intermediate harvesting (c ¼ 0:58), intermediate values of h

are stabilizing (see Fig. 11).
� For high harvesting (c ¼ 0:88), intermediate values of h can lead

to extinction (not shown here, because the diagram is similar to
Fig. 8).

The full diagram for h 2 ½0;1� and c 2 ½0;1� is shown in Fig. 12.
5. Discussion

This paper shows that the timing of harvesting can profoundly
change the impact of the exploitation on the population. We have
not only considered the population size (which determines the
yield), but we have focused particularly on the stability properties.
They drive the inherent population variability and are important
factors in the context of extinction and outbreaks.
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Fig. 10. Bifurcation diagram of the Allee effect model (2.3), (4.3) with an
overcompensatory Ricker map f ðxÞ ¼ e4ð1�xÞ4x2=ð1þ 4xÞ and c ¼ 0:09, using the
intervention time h as the bifurcation parameter. Essential extinction for values of h
close to 0 and 1 and bistability for intermediate values.
For overcompensatory population dynamics (without Allee ef-
fect), the models investigated predict that a harvest timing in the
mid-season has a stabilizing effect on the population. This holds
for both uni- and bimodal maps (like the Ricker and Clark–Ricker
map, respectively). For unimodal maps, harvesting generally tends
to be stabilizing [30,31], and this effect can be further enhanced by
a proper timing. For bimodal maps, harvesting can induce bubbling
and thus be both destabilizing (for intermediate harvesting efforts)
as well as stabilizing (for larger harvesting efforts). Here, harvest-
ing mid-season can prevent the bubbles to appear and therefore
again promotes the stabilizing impact of harvesting.

There are only few previous theoretical studies that explored
the consequences of different harvest timing, and even fewer take
into account the population stability. Jonzen and Lundberg observe
that ‘‘harvesting, no matter when, stabilizes the dynamics’’ [13, p.
41], but they consider harvest timing only in different order rela-
tive to birth and death events. Tang and Chen [17] show that later
harvest timings are stabilizing, whereas Xu et al. [18] find that
early harvest timings are more stabilizing than others.

The results in this paper contradict both of these earlier find-
ings. It should be noted, however, that the models are somewhat
difficult to compare. Both Refs. [17,18] assume a non-impulsive
continuous period of harvesting that stretches over certain times
of the season, with the former considering stage structure and
the latter considering periodic environmental fluctuations.

This paper employs the harvesting model proposed by Seno
[19]. While it is probably one of the simplest models to account
for variable harvest timings, it makes a number of simplifying
assumptions and, to our knowledge, currently appears to lack a
mechanistic derivation.

Regarding population size, previous models [7,17,18] find that
later harvesting times reduce equilibrium population size (and
thus the achievable yield), because late harvesting cuts into breed-
ing stock of the next generation and may not take advantage of
compensatory population growth effects. The results for the Seno
model (see Proposition 3.2) are in line with this theory—provided
there is no Allee effect (see our Discussion below). Moreover, we
find that the critical harvesting effort that leads to extinction is
independent of the harvest timing. Hence, overexploitation due
to too large harvesting effort cannot be prevented by a different
choice of timing. However, this also changes when we account
for the Allee effect.

To our knowledge, Allee effects have been completely ignored
in studies of harvest timing. Here, we find that the presence of a
strong Allee effect can dramatically alter the impact of different



Table 1
Summary of results

without Allee effect with strong Allee effect

Compensatory models Critical effort leading to overharvesting
independent of harvest timing (Prop. 3.1)

Critical harvesting effort does depend on harvest timing (Prop. 4.1): Intermediate
harvest timing makes the population more prone to extinction

Population size decreases monotonically with
harvest timing (Prop. 3.2)

Population size may increase with later harvesting (Fig. 8c)

Overcompensation
(unimodal maps)

Intermediate harvesting times are stabilizing (Prop.
3.4)

Intermediate harvesting times can be stabilizing (Fig. 11)

Intermediate harvesting times can promote survival if the harvesting effort is small
(Fig. 10)
Intermediate harvesting times can induce extinction if the harvesting effort is large
(Fig. 12, Prop. 4.1)

Overcompensation
(bimodal maps)

Intermediate harvesting times are stabilizing,
i.e. ‘bubbles’ disappear (Sect. 3.2)

Not considered

0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ha
rv

e
its
ng

 e
ff

tro
,
γ

intervention time, θ

Bistability

Extinction

Essential extinction
0.070

0.075

0.080

0.085

0.090

0.095

0.100

0 0.2 0.4 0.6 0.8 1.0

intervention time, θ

Bistability

Essential extinction

ha
rv

es
tin

g 
e

ff
tro
,
γ

(a) (b)
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harvest times (see the summary of results in Table 1). First of all, as
already mentioned, the critical harvesting effort leading to overex-
ploitation does depend on h (see Proposition 4.1). To be more pre-
cise, harvesting mid-season rather than early or late in the season
renders the population more vulnerable. This turns the previous
results from overcompensatory models upside down, where inter-
mediate harvest times are stabilizing (and may thus enhance per-
sistence). In the presence of a strong Allee effect, by contrast,
intermediate harvest times promote overexploitation.

Second, the relationship between population size at stable equi-
librium and harvest timing is no longer monotonic. As discussed
before, this used to be a key result and one of the common grounds
in the literature. A strong Allee effect, however, may induce an in-
crease in population size with later harvest timing (see Fig. 8c). We
have found this to occur for high harvesting efforts and when har-
vesting takes place late in the season. This effect can be observed in
Allee effect models with both under- and overcompensation (e.g.,
the modified Beverton–Holt and the modified Ricker maps,
respectively).

Third, when populations with Allee effect and overcompensa-
tion are doomed to essential extinction for harvesting regimes
early or late in the season, intermediate harvest timing can facili-
tate their survival (see Fig. 10). We have also shown that interme-
diate harvest timing can be stabilizing (see Fig. 11). Hence, Allee
effects can enhance both persistence as well as extinction when
harvesting mid-season; the actual outcome may depend on the
magnitude of the harvesting effort (see Section 4.2).

In the presence of a strong Allee effect, harvest timing impacts
not only on the population size at carrying capacity, but also on the
Allee threshold—which in turn determines the critical population
size for extinction. Harvesting early leaves the population little
time to grow above the Allee threshold. Therefore, it may be better
to harvest later in the season when the population has grown large
enough in size. However, there is clearly a trade-off, because later
harvesting also tends to reduce the population size. Depending on
which one of the two positive equilibria (Allee threshold and car-
rying capacity) decreases more quickly with later harvesting, this
may induce extinction or facilitate survival.

Some of the results in this paper are based on numerical simu-
lations, especially those regarding the Allee effect. They are there-
fore not as rigorous as the analytical results. Nevertheless, by
exploring a relatively wide range of parameter values, we have
captured emerging trends how harvest timing affects population
dynamics, stability and persistence.

This paper suggests that not only the harvesting effort, but also
its timing are crucial in designing management programmes of
exploited populations. For the same effort of harvesting, choosing
a different moment in time can drastically alter the population-le-
vel consequences. In particular, the Seno model suggests that inter-
mediate harvesting times tend to be stabilizing, but that the
presence of Allee effects may turn the consequences of harvesting
upside-down.

Acknowledgements

E. Liz was supported in part by the Spanish Government and
FEDER, grant MTM2010–14837. F.M. Hilker acknowledges support
from a Santander research travel grant. The authors wish to thank
the referees for their comments.

References

[1] M.S. Boyce, A.R.E. Sinclair, G.C. White, Seasonal compensation of predation and
harvesting, Oikos 87 (1999) 419–426.

[2] I.I. Ratikainen, J.A. Gill, T.G. Gunnarsson, W.J. Sutherland, H. Kokko, When
density dependence is not instantaneous: theoretical developments and
management implications, Ecol. Lett. 11 (2008) 184–198.

http://refhub.elsevier.com/S0025-5564(13)00274-5/h0010
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0010
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0015
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0015
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0015


B. Cid et al. / Mathematical Biosciences 248 (2014) 78–87 87
[3] H. Kokko, Optimal and suboptimal use of compensatory responses to
harvesting: timing of hunting as an example, Wildlife Biol. 7 (2001) 141–150.

[4] J.D. Nichols, M.J. Conroy, D.R. Anderson, K.P. Burnham, Compensatory
mortality in waterfowl populations: a review of the evidence and
implications for research and management, Trans. North Am. Wildlife Nat.
Res. Conf. 49 (1984) 535–554.

[5] H. Pöysä, J. Elmberg, G. Gunnarsson, P. Nummi, G.G. Sjöberg, K. Sjöberg,
Ecological basis of sustainable harvesting: is the prevailing paradigm of
compensatory mortality still valid?, Oikos 104 (2004) 612–615

[6] J.D. Nichols, M.C. Runge, F.A. Johnson, B.K. Williams, Adaptive harvest
management of North American waterfowl populations: a brief history and
future prospects, J. Ornithology 148 (2007) 343–349.

[7] H. Kokko, J. Lindström, Seasonal density dependence, timing of mortality, and
sustainable harvesting, Ecol. Modell. 110 (1998) 293–304.

[8] B.K. Sandercock, E.B. Nilsen, H. Brseth, H.C. Pedersen, Is hunting mortality
additive or compensatory to natural mortality? Effects of experimental harvest
on the survival and cause-specific mortality of willow ptarmigan, J. Anim. Ecol.
80 (2011) 244–258.

[9] J.M. Milner, C. Bonenfant, A. Mysterud, Hunting Bambi—evaluating the basis
for selective harvesting of juveniles, Eur. J. Wildlife Res. 57 (2011) 565–574.

[10] W.G. Doubleday, Harvesting in matrix population models, Biometrics 31
(1975) 189–200.

[11] W.M. Getz, R.G. Haight, Population Harvesting, Demographic Models of Fish,
Forest, and Animal Resources, Princeton University Press, Princeton, NJ, 1989.

[12] M. Åström, P. Lundberg, S. Lundberg, Population dynamics with sequential
density-dependencies, Oikos 75 (1996) 174–181.

[13] N. Jonzén, P. Lundberg, Temporally structured density dependence and
population management, Annales Zoologici Fennici 36 (1999) 39–44.

[14] F.M. Hilker, E. Liz, Harvesting, census timing and hidden hydra effects, Ecol.
Complexity 14 (2013) 95–107.

[15] I. Olmsted, E.R. Alvarez-Buylla, Sustainable harvesting of tropical forest trees:
demography and matrix models of two palm species in Mexico, Ecol. Appl. 5
(1995) 484–500.

[16] R.P. Freckleton, D.M. Silva Matos, M.L.A. Bovi, A.R. Watkinson, Predicting the
impacts of harvesting using structured population models: the importance of
density-dependence and timing of harvest for a tropical palm tree, J. Appl.
Ecol. 40 (2003) 846–858.

[17] S. Tang, L. Chen, The effect of seasonal harvesting on stage-structured
population models, Bull. Math. Biol. 48 (2004) 357–374.

[18] C. Xu, M.S. Boyce, D.J. Daley, Harvesting in seasonal environments, J. Math.
Biol. 50 (2005) 663–682.

[19] H. Seno, A paradox in discrete single species population dynamics with
harvesting/thinning, Math. Biosci. 214 (2008) 63–69.

[20] T. Matsuoka, H. Seno, Ecological balance in the native population dynamics
may cause the paradox of pest control with harvesting, J. Theor. Biol. 252
(2008) 87–97.

[21] H. Seno, Native intra- and inter-specific reactions may cause the paradox of
pest control with harvesting, J. Biol. Dyn. 4 (2010) 235–247.

[22] C.W. Clark, Mathematical Bioeconomics, The Optimal Management of
Renewable Resources, J. Wiley, New York, 1990.

[23] A.-A. Yakubu, N. Li, J.M. Conrad, M.-L. Zeeman, Constant proportion harvest
policies: dynamic implications in the Pacific halibut and Atlantic cod fisheries,
Math. Biosci. 232 (2011) 66–77.

[24] E.A. Pardini, J.M. Drake, J.M. Chase, T.M. Knight, Complex population dynamics
and control of the invasive biennial Alliaria petiolata (garlic mustard), Ecol.
Appl. 19 (2009) 387–397.

[25] E.F. Zipkin, C.E. Kraft, E.G. Cooch, P.J. Sullivan, When can efforts to control
nuisance and invasive species backfire?, Ecol Appl. 19 (2009) 1585–1595.
[26] P.A. Abrams, When does greater mortality increase population size? The long
history and diverse mechanisms underlying the hydra effect, Ecol. Lett. 12
(2009) 462–474.

[27] E. Liz, A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete
population model with constant effort harvesting, J. Math. Biol. 65 (2012) 997–
1016.

[28] M. Sieber, F.M. Hilker, The hydra effect in predator-prey models, J. Math. Biol.
64 (2012) 341–360.

[29] R. Lande, Risks of population extinction from demographic and environmental
stochasticity and random catastrophes, Am. Nat. 142 (1993) 911–927.

[30] B.S. Goh, Stability in a stock-recruitment model of an exploited fishery, Math.
Biosci. 33 (1977) 359–372.

[31] R.M. May, J.R. Beddington, J.W. Horwood, J.G. Shepherd, Exploiting natural
populations in an uncertain world, Math. Biosci. 42 (1978) 219–252.

[32] C.N.K. Anderson, C. Hsieh, S.A. Sandin, R. Hewitt, A. Hollowed, J. Beddington,
R.M. May, G. Sugihara, Why fishing magnifies fluctuations in fish abundance,
Nature 452 (2008) 835–839.

[33] C. Hsieh, C.S. Reiss, J.R. Hunter, J.R. Beddington, R.M. May, G. Sugihara, Fishing
elevates variability in the abundance of exploited species, Nature 443 (2006)
859–862.

[34] R.F. Costantino, J.M. Cushing, B. Dennis, R.A. Desharnais, Experimentally
induced transitions in the dynamic behaviour of insect populations, Nature
375 (1995) 227–230.

[35] E. Liz, P. Pilarczyk, Global dynamics in a stage-structured discrete-time
population model with harvesting, J. Theor. Biol. 297 (2012) 148–165.

[36] W.E. Ricker, Stock and recruitment, J. Fish. Res. Board Can. 11 (1954) 559–623.
[37] E. Braverman, E. Liz, Global stabilization of periodic orbits using a proportional

feedback control with pulses, Nonlinear Dyn. 67 (2012) 2467–2475.
[38] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and

Epidemiology, Springer-Verlag, New York, 2001.
[39] R.J.H. Beverton, S.J. Holt, On the Dynamics of Exploited Fish Populations, Vol. II

of Fishery Investigations, Ministry of Agriculture, Fisheries and Food, 1957.
[40] E. Liz, How to control chaotic behaviour and population size with proportional

feedback, Phys. Lett. A 374 (2010) 725–728.
[41] J. Maynard Smith, M. Slatkin, The stability of predator-prey systems, Ecology

54 (1973) 384–391.
[42] J.G. Shepherd, A versatile new stock-recruitment relationship for fisheries, and

the construction of sustainable yield curves, J. du Conseil 40 (1982) 67–75.
[43] E. Liz, Complex dynamics of survival and extinction in simple population

models with harvesting, Theor. Ecol. 3 (2010) 209–221.
[44] A.O. Shelton, M. Mangel, Fluctuations of fish populations and the magnifying

effects of fishing, Proc. Nat. Acad. Sci. U.S.A 108 (2011) 7075–7080.
[45] J.G. Milton, J. Bélair, Chaos, noise, and extinction in models of population

growth, Theor. Popul. Biol. 37 (1990) 273–290.
[46] F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation,

Oxford University Press, New York, 2008.
[47] F.C. Hoppensteadt, Mathematical Methods of Population Biology, Cambridge

University Press, Cambridge, 1982.
[48] H.T.M. Eskola, S.A.H. Geritz, On the mechanistic derivation of various discrete-

time population models, Bull. Math. Biol. 69 (2007) 329–346.
[49] D.S. Boukal, L. Berec, Single-species models of the Allee effect: extinction

boundaries, sex ratios and mate encounters, J. Theor. Biol. 218 (2002) 375–394.
[50] J. Jacobs, Cooperation, optimal density and low density thresholds: yet another

modification of the logistic model, Oecologia 64 (1984) 389–395.
[51] S.J. Schreiber, Allee effects, extinctions, and chaotic transients in simple

population models, Theor. Popul. Biol. 64 (2003) 201–209.
[52] S.J. Schreiber, Chaos and population disappearances in simple ecological

models, J. Math. Biol. 42 (2001) 239–260.

http://refhub.elsevier.com/S0025-5564(13)00274-5/h0020
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0020
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0025
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0025
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0025
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0025
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0030
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0030
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0030
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0035
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0035
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0035
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0040
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0040
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0045
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0045
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0045
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0045
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0050
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0050
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0055
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0055
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0060
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0060
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0060
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0065
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0065
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0070
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0070
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0075
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0075
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0080
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0080
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0080
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0085
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0085
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0085
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0085
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0090
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0090
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0095
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0095
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0100
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0100
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0105
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0105
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0105
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0110
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0110
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0115
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0115
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0115
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0120
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0120
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0120
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0125
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0125
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0125
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0130
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0130
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0135
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0135
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0135
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0140
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0140
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0140
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0145
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0145
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0150
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0150
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0155
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0155
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0160
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0160
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0165
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0165
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0165
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0170
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0170
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0170
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0175
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0175
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0175
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0180
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0180
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0185
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0190
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0190
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0195
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0195
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0195
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0200
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0200
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0205
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0205
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0210
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0210
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0215
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0215
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0220
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0220
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0225
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0225
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0230
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0230
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0230
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0235
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0235
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0235
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0240
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0240
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0245
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0245
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0250
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0250
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0255
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0255
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0260
http://refhub.elsevier.com/S0025-5564(13)00274-5/h0260

	Harvest timing and its population dynamic consequences in a discrete single-species model
	1 Introduction
	2 The Seno model
	3 Compensatory models
	3.1 Unimodal maps
	3.2 Bimodal maps

	4 Models with Allee effect
	4.1 Modified Beverton–Holt model
	4.2 Modified Ricker model

	5 Discussion
	Acknowledgements
	References


