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a b s t r a c t

Biological invasions often damage island ecosystems. One such damaging consequence of biological

invasions is hyperpredation. Hyperpredation is the increase in predation pressure from a generalist

predator following the introduction of an alternative prey, typically a consequence of apparent

competition between the two prey. Models for this have been devised that demonstrate this effect.

However, hyperpredation may not always occur or may not always occur at the same strength. Here,

we investigate how different mechanisms affect the magnitude of hyperpredation: (i) saturation of the

predator’s functional response, (ii) predator interference and (iii) non-predatory competition among

predators. We find that all three mechanisms generally reduce hyperpredation. Predator saturation can

actually overturn hyperpredation into hypopredation, an increase in native prey, as a result of apparent

predation between the two prey. This occurs when the alternative prey is ‘poisoned prey’, i.e. prey that

have a handling time cost greater than the nutritional benefit for the predator. Consuming ‘poisoned

prey’ can result in an increase or decrease in predator density. Conversely, we also identify scenarios in

which interference and competition may increase hyperpredation. Based on these insights, we conclude

that the invasion of established ecosystems by non-native prey can lead to more diverse consequences

than previously thought. Potential control measures should take these effects into account.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Hyperpredation is the increase in predation pressure upon a
native prey following the introduction of an alien prey under
a common predator. The term hyperpredation is relatively recent
as it was first used in Smith and Quin (1996). It has since been
found to be a common phenomenon. A classical example of
hyperpredation is the Cat–Rabbit–Bird problem on subantarctic
Macquarie Island (Taylor, 1979; Courchamp et al., 1999, 2000).
Originally, cats (Felis catus) were introduced onto the island which
caused many problems for several native bird species, but even-
tually the ecosystem stabilised with an endemic cat population.
Following this, rabbits (Oryctolagus cuniculus) invaded. The now
naturalised cats switched prey to this new prey source. This new
food supply allowed for greater cat numbers, which in turn
increased predation pressure on many native birds. This increase
in predation pressure has been linked with the extinction of two
species of native flightless birds (a parakeet and a banded rail)
(Taylor, 1979).

There are other systems where hyperpredation has been demon-
strated. For example, in laboratory conditions with a parasitoid wasp
and two moth hosts (Bonsall and Hassell, 1997), and in the wild with
ll rights reserved.
an Eagle–Pig–Fox system on the Californian Channel Islands
(Roemer et al., 2001, 2002; Courchamp et al., 2003). However, in
the latter, some have suggested that Allee effects are also involved
(Angulo et al., 2007).

Since the term hyperpredation was coined, studies have either
developed models that demonstrate hyperpredation (Courchamp
et al., 2000; Roemer et al., 2001, 2002) or have used such models
for understanding the consequences of possible control strategies
(Courchamp et al., 1999; Zhang et al., 2006). However, as far as
the authors are aware, there has not been either a measure of the
strength of hyperpredation or a study on the limitations of
hyperpredation. On the other hand, there are such studies in the
related topic of apparent competition.

Apparent competition is the negative indirect effect that two
prey have on each other when they share a common predator
(Holt, 1977). Although the first theoretical work suggesting that
prey can compete via a ‘controlling factor’ like a common
predator was Williamson (1957), it was Holt (1977) that triggered
research into apparent competition. Apparent competition is the
typical mechanism that leads to hyperpredation, although it is not
necessarily the only mechanism. Apparent predation where the
native prey is the apparent prey will also lead to hyperpredation
(Fig. 1). In fact, Fig. 1 also demonstrates that negative hyperpre-
dation, or hypopredation exists, when there is apparent mutualism

or the native prey is the apparent predator. Given the possible
existence of apparent mutualism and apparent predation in Fig. 1,
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Fig. 1. The many guises of shared predation: the links between hyper-/hypopre-

dation of the bird (native prey) and the signs of the indirect interactions between

the bird and rabbit (introduced prey). Hyper-/hypopredation is determined by the

sign of the indirect effect on the bird whereas both signs are used to determine the

nature of the indirect interaction.
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apparent competition is not necessarily equivalent to shared
predation. The latter is therefore a more appropriate name for
this food web module.

Of these different indirect effects, only apparent competition
caught the imagination of others. However, Holt (1977) also
mentioned apparent mutualism and apparent predation as indir-
ect links, although he did not demonstrate such links in a one
predator–two prey system. Apparent mutualism was discovered
in a one predator–two prey system by Abrams and Matsuda
(1996). Their model considered both a saturating functional
response and density dependence in the predator. Likewise,
Abrams et al. (1998) suggested that apparent predation may exist
under oscillating dynamics when considering the time average of
populations. Our main result is that apparent predation can exist
even in the absence of population cycles—and lead to hypopreda-
tion in considerably more circumstances than previously thought.

In this paper, we develop some simple measures of the
strength of hyperpredation and then compare several models to
establish which assumptions limit, eliminate or even overturn
hyperpredation. This is done by using the one predator–two prey
model in Holt (1977) (and before that in MacArthur, 1970) as a
basic model, i.e. the classic apparent competition model. We
construct three other models by adding (i) a Holling type II
functional response, (ii) predator interference and (iii) non-pre-
datory competition to the basic model. These are chosen as
possible limiting factors as they should restrict either the func-
tional response or the growth of predator numbers. By doing so
we find that all such factors reduce hyperpredation for most
parameter ranges, especially when the introduced prey is the
stronger apparent competitor. In particular, a reduction in preda-
tion pressure, i.e. negative hyperpredation or hypopredation, is
found in the Holling type II model. This contrasts with Abrams
and Matsuda (1996), where they combine a Holling type II
functional response with non-predatory competition.

The hypopredation is the result of ‘poisoned prey’, prey that
takes more time being handled than they are worth in nutritional
benefit. In extreme (and hypothetical) cases, predators become
extinct from preying on poisoned prey. In mild cases, preying on
poisoned prey can increase predator density. This supports a
hypothesis from Whelan et al. (2003, p. 339) (and implicit in Holt,
1977) about apparent predation occurring in a two-prey Holling
type II functional response where prey have a low energy to
handling time ratio. Our example of hypopredation is distinct
from that in Abrams and Matsuda (1996) as here we have
apparent predation (Holt, 1977) between the native and invading
poisoned prey and not apparent mutualism. In fact, the native
prey is the apparent predator whereas the invading poisoned prey
is the apparent prey. Although no specific examples of poisoned
prey have come to the authors’ attention, introduced prey that are
difficult for a predator to handle or catch, or have low nutritional
benefit for the predator are prime candidates.

Throughout this paper for ease of language and to conform
with previous models (Courchamp et al., 1999, 2000; Zhang et al.,
2006), the predator, native prey and introduced/alternative prey
are interchangeable with Cat, Bird and Rabbit, respectively. This
does not mean that the models in this paper are applicable to an
actual Cat–Bird–Rabbit system.
2. The models

2.1. The basic model

As described in the previous section, we start with a basic
model. This model is found in Holt (1977), which after rescaling
becomes

dB

dt
¼ rBBð1�BÞ�BC, ð1Þ

dR

dt
¼ rRRð1�RÞ�gRC, ð2Þ

dC

dt
¼ ðaBþbRÞC�C, ð3Þ

where B, R and C are the rescaled variables for birds, rabbits and
cats, respectively; rB and rR are the per capita intrinsic growth
rates when rare for birds and rabbits, respectively; g is the relative
attack rate of cats on rabbits compared to birds; and a and b

describe the cats’ numerical response on birds and rabbits,
respectively, combining predation rates and conversion efficien-
cies. Time has been scaled according to the average lifetime of
cats; bird and rabbit densities have been scaled according to their
respective carrying capacities; and cat density has been scaled
such that the attack rate of cats on birds is unity.

This model was chosen for its relative simplicity and adapt-
ability. Importantly for this paper, this model is the classic
apparent competition model. All the other models in this paper
are simple expansions of the basic model.

2.2. Holling type II functional response

Holling (1959) type II functional responses are frequently used
to take into account that predation is limited by the time
predators need to capture, kill and digest the prey. Incorporating
a Holling type II functional response to the basic model gives

dB

dt
¼ rBBð1�BÞ�

BC

1þaBþbR
, ð4Þ

dR

dt
¼ rRRð1�RÞ�

gRC

1þaBþbR
, ð5Þ

dC

dt
¼

aBþbR

1þaBþbR
�1

� �
C, ð6Þ

where a and b represent the scaled handling time for the cat on
the bird and rabbit, respectively. Implicit in this formulation (and
in fact all the other models) is that the predator acts based on
random encounters with both prey, and cannot choose to focus on
only one prey when both are present.
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2.3. Predator interference

Predators are in competition for food. This mechanism can be
incorporated into the basic model by using a Beddington–
DeAngelis functional response (Beddington, 1975; DeAngelis
et al., 1975), a functional response that uses a Holling time
management argument by incorporating a term that factors in
time the predator uses acting against other predators and conse-
quently is not hunting. Such functional responses have been used
in other hyperpredation models like Zhang et al. (2006). To isolate
predator interference, we will assume that the predator has a zero
handling time for both prey. This allows us to attribute any
change in hyperpredation relative to the basic model to predator
interference.

Using the same rescaling as the basic model, we get

dB

dt
¼ rBBð1�BÞ�

BC

1þhC
, ð7Þ

dR

dt
¼ rRRð1�RÞ�g RC

1þhC
, ð8Þ

dC

dt
¼

aBþbR

1þhC
�1

� �
C, ð9Þ

where h is a scaled parameter based on time a cat wastes when
encountering another cat when foraging.

2.4. Non-predatory competition among predators

Predators do not only compete for prey, but also for other
resources like water, shelter and nesting sites. Consequently, this
model includes a density dependent death term for the predator:

dB

dt
¼ rBBð1�BÞ�BC, ð10Þ

dR

dt
¼ rRRð1�RÞ�gRC, ð11Þ

dC

dt
¼ ðaBþbRÞC�C�pC2, ð12Þ

where p is a scaled parameter that incorporates the strength of
non-predatory competition among cats (classical intraspecific
competition).
3. Steady state analysis

All our models have an equivalent set of seven steady states.
The trivial (0,0,0), Bird only (1,0,0), Rabbit only (0,1,0) and Rabbit–
Bird (1,1,0) steady states always exist no matter what parameter
values are used. In addition to these, there are also Cat–Bird, Cat–
Rabbit and Cat–Rabbit–Bird steady states, whose existence and
value depend upon the parameter values. Although the actual
details of each steady state for each model are given in the
Appendix, a summary is given here.

Usually, the stability of steady states are found using the
Routh–Hurwitz criteria. Computing the 3D Routh–Hurwitz cri-
teria is not trivial. Two of the three conditions, namely a negative
determinant and negative trace of the Jacobian are reasonably
straightforward. However, the third condition is not. This can be
bypassed in the basic, predator interference and non-predatory
competition models by using the qualitative stability criteria (see
May, 1973; Jeffries, 1974).

The qualitative stability criteria are a sequence of simple rules
(see references above or Edelstein-Keshet, 2005, for details) based
on the signs of the elements of the Jacobian (i.e. þ , 0,�),
irrespective of their actual values. It is important to note that
the qualitative stability criteria are stronger than the Routh–
Hurwitz criteria. This means that if the qualitative stability
criteria are satisfied, then the Routh–Hurwitz criteria must also
be satisfied. In other words, qualitative stability implies stability.
However, generally the reverse is not true.

Below are examples of the signed Jacobians to demonstrate
qualitative stability, in this case for the basic model. Question
marks signify that it is not absolutely clear whether the element
is positive or negative when armed only with the fact that
parameters (and non-zero variables) are strictly positive. In the
Cat–Bird Jacobian matrix,

� 0 �

0 ? 0

þ þ 0

0
B@

1
CA,

qualitative stability occurs when the middle element (the one
that is a question mark) is negative. If the middle element is
positive, then the determinant is positive, breaking one of the 3D
Routh–Hurwitz criteria, and thus the Cat–Bird steady state cannot
be stable. This means that not being qualitatively stable implies
not being stable in this case. Hence stability and qualitative
stability are equivalent for the Cat–Bird steady state. The
same argument applies to the Cat–Rabbit steady state. For the
Cat–Rabbit–Bird steady state,

� 0 �

0 � �

þ þ 0

0
B@

1
CA,

the Jacobian is always qualitatively stable and thus stable (when
the steady state exists). The predator interference and non-
predatory competition models have essentially the same Jaco-
bians and thus qualitative stability conditions; the only difference
is the bottom-right element is negative instead of zero.

All three of these models have the same overall structure, with
equivalent existence and stability conditions. In particular, there
is exactly one stable steady state for any given parameter set and
consequently the long term dynamics are known for all but trivial
initial conditions (Fig. A1 in Appendix). Using this knowledge, we
can analytically find the hyperpredation effect for these models as
there is no ambiguity of the long term results. However, the
analytic solutions break down at h¼0 for the interference model.
Using the fact that the limit as h goes to zero is the same as the
basic model; analytic solutions from the basic model were used in
the interference model at h¼0.

For the Holling type II model, the qualitative stability criteria
are not useful for all steady states with cats present. For example,
the Jacobian for the Cat–Bird steady state has too many elements
whose sign are unknown:

? þ �

0 ? 0

þ ? 0

0
B@

1
CA:

For the Cat–Rabbit–Bird steady state, the Jacobian,

? þ �

þ ? �

? ? 0

0
B@

1
CA,

can never satisfy the qualitative stability criteria. A reason is the
top-middle and middle-left elements are positive, which signifies
a (short term) mutualistic relationship between birds and rabbits.

This is to be expected given that Holling type II functional
responses are well known for non-trivial changes of stability;
most notably, changes caused by Hopf bifurcations that lead to
(stable) periodic solutions. This can happen prior to the rabbit
invasion in the Cat–Bird system and in the full Cat–Rabbit–Bird
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system. Because of the complexity of deriving the stability
conditions without the qualitative stability shortcut, the stability
conditions for the Cat–Rabbit–Bird steady state have not been
found. This is not important given that periodic solutions are
known to exist for some parameter values, and consequently
numerical solutions are acquired since analytical solutions are not
possible for periodic solutions. However, except for the emer-
gence of periodic solutions, the system still exhibits the same
pattern as the other models (Fig. A2 in Appendix).
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Fig. 2. Basic model: hyperpredation (native prey decrease) as a function of the

relative attack rate logðgÞ where rB¼2, rR¼2, a¼1.5 and b¼2.
4. Hyperpredation measure

In this section, we develop some ground rules on measuring
hyperpredation and comment on numerical and graphic methods.
The measure of hyperpredation chosen for this paper is the
long term reduction in the native prey (bird) following the
arrival of the introduced prey (rabbit) relative to the pre-invasion
native prey density as a percentage. This means that the
hyperpredation measure of 100% is the extinction of the bird,
and 0% means that bird densities are unchanged following rabbit
introduction, most likely from a failed rabbit invasion. Negative
values indicate an increase in the native prey population, i.e.
hypopredation.

Other measures were considered, particularly the long term
increase in predators and predation pressure. Although hyperpre-
dation is the increase in predation pressure, this is not particu-
larly tangible or observable as it is a rather abstract concept. The
increase in predators are the observable cause and the decrease in
native prey is the observable symptom. Likewise, native prey and
probably to a lesser extent, native predators are usually the focus
of conservation efforts and consequently these measures are
likely to be of great interest to conservationists. Because of this,
the reduction of native prey following rabbit introduction (as a
percentage) has been chosen for particular focus, although the
increase of predators is still of interest and was measured
throughout for comparison and clarity.

To conform with other models based on the classical Mac-
quarie Island Cat–Rabbit–Bird system (Courchamp et al., 1999,
2000; Zhang et al., 2006), the initial condition will be based on the
Cat–Bird steady state of the model of interest with the addition of
a small perturbation to represent the introduction of rabbits. This
means that birds and cats have approached the Cat–Bird steady
state prior to the introduction of rabbits. With respect to the
model, parameters must therefore take values where a Cat–Bird
steady state can exist when rabbits are absent (i.e. a�a41 for the
Holling type II model, a41 for all other models). In the Holling
type II model, the Cat–Bird subsystem can be cyclic in the absence
of rabbits. For simplicity, parameter values have been chosen such
that no periodic solutions occur in the Cat–Bird system.

Even though periodic oscillations are excluded in the pre-inva-
sion Cat–Bird system, they can still arise in the full Cat–Rabbit–Bird
system. To deal with this, the system is run numerically for a long
time period and all transients are discarded. From what remains,
which is assumed to be the long term dynamics, we find the
maximum and minimum of the variables of interest. We take these
values to get minimum and maximum values of hyperpredation
respectively. For stable steady states, the maximum and minimum
values are the same (up to numerical error). For periodic solutions,
the maximum and minimum values are distinct. This is only an
issue in the Holling type II model since the other models do not have
periodic solutions. Other measures such as the time average of the
periodic solution were considered. However, the maximum hyper-
predation is of more interest since if it is large, the bird population is
at risk of (stochastic) extinction.
In some contour plots (Figs. 6a and 7a), ‘1%’ and ‘99%’ contour
lines are used as approximations for ‘0%’ and ‘100%’ contour lines
respectively. Likewise, Fig. 3c uses a ‘�99%’ contour line to
approximate the ‘�100%’ contour line. This is because small
numerical errors blur the boundaries of these clear cut regions
of rabbit and bird (and cat in the case of Fig. 3c) extinction. It also
reduces the ‘waviness’ that occurred in these contour lines, which
are still prominent in Figs. 3c and 5.
5. Results

We begin with some fundamental results from the basic
model. Then we will explore what effects the introduction of a
Holling type II functional response, predator interference and
non-predatory competition have on hyperpredation. The analysis
focuses on the introduced parameters of bird and rabbit handling
times (a and b), predator interference (h) and non-predator
competition (p) together with differing choices of the apparent
competition parameters (rB, rR, g).

5.1. The basic model

The basic model is the classic apparent competition model
from Holt (1977). In this model, there are two distinct cases: birds
are the stronger apparent competitor (grb4rr) and rabbits are the
stronger apparent competitor (grborr). The stronger apparent
competitor is the one that can survive under the greater number
of predators, and thus can never be driven to extinction by a
predator population maintained by the other prey (Fig. A1 in
Appendix). Fig. 2 demonstrates that if rabbits are a much weaker
apparent competitor (i.e. logðgÞb0), rabbits will not invade and
thus hyperpredation will not occur. Likewise, if rabbits are a
much stronger apparent competitor (i.e. logðgÞ50), rabbits will
invade, driving the predator density up which in turn drives birds
to extinction. In between, both rabbits and birds will coexist with
some reduction in bird densities. From this we can infer that, for
this model, a successful invasion will always cause some sort of
hyperpredation effect.

Many discussions on hyperpredation consider only the intro-
duction of a stronger apparent competitor, so much so that some
define hyperpredation as asymmetric (Whelan et al., 2003)
or unilateral (Courchamp et al., 1999) apparent competition.
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However, it is of note that the successful invasion of a weaker
apparent competitor (which occurs when rR4grBð1�1=aÞ for the
basic model) can still cause a significant reduction in the native
prey population. It just cannot lead to the extinction of the native
prey when considered in isolation. On top of this, hyperpredation
can theoretically be the result of apparent predation (Fig. 1),
although not in the basic model.

The same conditions for determining the stronger apparent
competitor (the relative size of grb and rr) apply in the predator
interference, non-predatory competition models. On top of this,
these conditions apply in the Holling model when the introduced
prey is not poisoned prey, i.e when b4b. When the introduced
prey is poisoned prey, the indirect effect of shared predation
changes from apparent competition to apparent predation. In this
case, the apparent prey (by model assumption, rabbits) suffers
from the same negative indirect effect as apparent competition,
with an equivalent dependence on the apparent competition
parameters for survival. However, the apparent predators (in this
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case, birds) do not suffer from apparent competition. Instead, they
benefit from reduced predation pressure as cats waste effort on
the poisoned prey. Hence, the relative strength of ‘apparent
competitors’ under apparent predation determines when the
rabbits can successfully invade.

5.2. Holling type II functional response and hypopredation

Fig. 3a and b are contour plots of hyperpredation (native prey
decrease) as a function of the handling times (a and b) where the
stronger apparent competitor is the bird and rabbit, respectively.
When bob¼ 2, we have that increasing the rabbit handling time
(b) decreases hyperpredation whereas increasing the bird hand-
ling time (a) increases hyperpredation (the left hand side of
Fig. 3a and b). When b4b¼ 2 (the right hand side of Fig. 3a
and b), all contours have become negative. This means that we
have negative hyperpredation or hypopredation, the increase in
bird density following rabbit introduction. Since both Fig. 3a and
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Fig. 5. Holling model in a parameter region where oscillations occur (grey area):

hyperpredation patterns are ‘clouded’ by periodic solutions in the Holling model

caused by Hopf bifurcations. The maximum hyperpredation values are shown.
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b have qualitatively similar results, this suggests that which prey
is the strongest apparent competitor does not change the pattern.

Fig. 3c plots the increase in predator density that corresponds
to Fig. 3b. Region A is the region that corresponds with the
hyperpredation in Fig. 3a and b and demonstrates a large increase
in the predator population. There are three different outcomes for
the predator within the region of hypopredation in Fig. 3a and b;
the increase (region B), decrease (region C) and extinction (region
D) of the cat population. All four of these regions in Fig. 3c have a
sample time profile in Fig. 4 demonstrating changes following an
invasion of rabbits.

Why do we have these results? To explain this, let us call a and
b the (time) costs of predation on birds and rabbits, respectively,
and let us call a and b the (growth) benefit from predation on
birds and rabbits, respectively. Firstly, we assumed that cats
derive profit (benefit minus cost) when preying upon birds only,
otherwise there would not be any Cat–Bird steady state in the
absence of rabbits. Following the introduction of rabbits, addi-
tional profit is available provided bob. This would increase cat
numbers, which in turn would increase predation on birds. This
increase (hyperpredation) depends on the strength of the profit
on the rabbits (b�b).
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Likewise, suppose that a is large (but small enough for the
Cat–Bird steady state to exist); then before the rabbit invasion,
the birds are near carrying capacity and there are a few cats (see
Appendix A.4, the Cat–Bird steady state). Following a rabbit
invasion, the cat population will increase substantially, which
greatly increases hyperpredation (provided bob). If a is small, so
the bird population is small and the cat population is large; then
although the cat population will increase and hyperpredation will
occur following a rabbit invasion, the increase in the cat popula-
tion will not be proportionally as large, and thus the increase in
predation pressure would be less.

At b¼ b we have that there is additional food for the cat, which
increases the cat population. However, the total predation pres-
sure on the birds is unchanged as the increase in cats is perfectly
counterbalanced by the proportion of time each predator spends
handling rabbits (see Appendix A.4.1). By continuity, when b is a
little larger than b, we have both hypopredation and an increase
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hyperpredation (reduction in native prey) as a function of b and non-predatory compe
in predator following a rabbit invasion (region B in Fig. 3c). But
why is there this increase in the predators?

When b is a little larger than b (i.e. preying upon rabbits gives the
predator a negative profit or a loss), even though predators are
spending more time handling rabbits than there is growth benefit in
preying upon rabbits, predator numbers increase following a rabbit
invasion. This is because even though there is less predation on
birds, there is more predation overall following the invasion.
Alternatively, one can argue that even though preying upon rabbits
has a higher time cost than nutritional benefit, hunting rabbits as
well as birds will reduce the proportion of time wasted by the
predator when searching for prey. Remember that while the pre-
dator is searching it is not getting any food benefit.

When b becomes significantly larger than b, the additional
predation on rabbits following invasion does not make up for the
decline in predation on birds. This results in a reduction in total
predation rate and thus the predator population will decrease.
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Here, the balance between high rabbit handling times and reduced
search times for the predator has shifted; the high handling time is
not fully compensated by the reduced time spent searching for
prey. When b is so large that ða�aÞþðb�bÞr1, then the predator
cannot survive even when the prey are at carrying capacity. This is
because the overall growth rate from predation for the cats, when
preying upon both birds and rabbits, cannot make up for the
natural death rate. In other words, trying to catch rabbits that cats
randomly encounter will drive the cats to extinction.

In this scenario of hypopredation, the introduced prey is ‘poi-
soned prey’ for the predator. This is a reference to a ‘poisoned pawn’
in chess, where the act of capturing a pawn ultimately results in a
position considerably worse for the player than if the pawn is left
alone. This is particularly apt when the predator dies out because of
a strategy that involves preying upon poisoned prey.

Increasing a and b can lead to periodic solutions (Fig. A2 in
Appendix), as expected from Holling type II functional responses.
Fig. 5 shows how oscillatory dynamics affect hyper-/hypopredation.
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function of b and predator interference. Other parameters as in Fig. 6.
The grey region corresponds to periodic solutions with large ampli-
tudes. This behaviour clouds the trends in hyperpredation, although
Fig. 5 demonstrates the same hyper-/hypopredation effect outside
the grey region as those found in Fig. 3. In the periodic region, the
maximum hyperpredation can exceed 90%. Such values could lead to
the extinction of the native prey via stochastic processes.

5.3. Predator interference and non-predatory competition

Figs. 6 and 7 demonstrate that both non-predatory competition
and predator interference have similar results when compared
with the basic model. Taking advantage that the basic model is
exactly the same as the non-predatory competition and predator
interference models when the parameters p and h are set to zero;
we can simply compare results for p,h40 with the case p,h¼ 0.

When rabbits are the stronger apparent competitor, i.e. on the
left hand side of Figs. 6a and 7a, the contours (and hence
hyperpredation) decrease as non-predatory competition (p) or
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predator interference (h) increase. This is demonstrated more
clearly in Figs. 6b and 7b, where hyperpredation monotonically
decreases as p or h increase, and thus hyperpredation is lower for
all p, h40 than in the basic model (p,h¼ 0), where severe or very
near severe hyperpredation occurs.

When birds are a significantly stronger apparent competitor, i.e.
on the right hand side (logðgÞ\0:1) of Figs. 6a and 7a, the contours
first increase with small p or h, and only start to decrease when p or h

are sufficiently large. This is demonstrated in Figs. 6c and 7c, where
hyperpredation increases for small p,h until hyperpredation reaches a
maximum around p¼ 0:6 or h¼0.3, beyond which hyperpredation
starts to decline. Around p¼ 2:7 or h¼0.6, hyperpredation is at the
same level as that of the basic model. The reduction in hyperpreda-
tion continues beyond these points.

What explains these results? In general, one would assume that
increasing negative effects on predators would decrease the growth
from additional food sources and consequently reduce hyperpreda-
tion. This does not seem consistent with the anomaly of the increased
hyperpredation when the birds are the stronger apparent competitor.
However, this can be explained.

When the rabbit is the weaker apparent competitor, it is
possible that the birds can sustain a large enough population of
predators such that rabbits could not survive, or at least keep
rabbit levels low, provided birds are suitably nutritious. However,
with p40, there are less predators present before rabbit invasion
than when compared to the basic model (p¼ 0). With a smaller
predator population, (larger) invasions of rabbits are possible.
However, with this (larger) invasion, the cat has a larger food
source, which allows the cat to increase its population size. This
increases predation pressure on the birds and thus increases
hyperpredation. The same argument can be used for predator
interference by replacing p with h.

This argument has omitted the counteracting effect of
decreased growth from food sources for the predation mentioned
earlier. However, the point is the relative strength of these two
effects; when the rabbits cannot invade or have difficulty invad-
ing, the increase in hyperpredation from the (larger) invasion of
rabbits has a much stronger effect. Also, this argument is
only valid in scenarios where the invading prey is a weaker
apparent competitor that has difficult invading; if it is the
stronger apparent competitor, rabbits will always invade without
difficulty.

We have established that both predator interference and non-
predatory competition have similar effects on hyperpredation.
However, there is a significant quantitative difference between
the results of the two models, namely in the strength of hyper-
predation. In Fig. 6a, all contour lines except for the ‘0%’ contour
eventually arc back to the left for large enough p. This implies
that scenarios where the native prey were extinct in the basic
model (p¼ 0) can exhibit any hyperpredation value except ‘0%’
just by increasing p by the right amount. This means that the
native prey can be saved from extinction. Fig. 7a demonstrates the
same pattern except the ‘arcing back’ becomes more pronounced
as h increases, i.e. the contours become more horizontal.

This comparison between Figs. 6a and 7a is like a comparison
between a ‘linear’ function of p and a ‘quadratic’ function of h.
This ‘linear–quadratic’ relationship is much clearer when compar-
ing Figs. 6d and 7d. The contours in Fig. 6d are straight lines,
whereas the contours look like quadratic curves in Fig. 7d.
A possible explanation for this could be the nature of predation
pressure, which is the product of the functional response and
predator density. For the non-predatory competition model, p
limits predator growth (by increasing predator mortality),
whereas predator interference limits the functional response (by
restricting hunting time) on top of limiting predator growth
(again by restricting hunting time). This two-fold effect seems
sufficient to explain the relative strength of p and h in limiting
hyperpredation. However, this ‘linear–quadratic’ relationship
could also just be an artefact based on the (per capita) linear
nature of p, whereas h is hyperbolic in nature.
6. Discussion

We have found that the saturation of the predator’s functional
response can lead to a reduction of hyperpredation or even cause
hypopredation when compared to the original linear functional
response used in the basic model. We also found that competition
and interference among predators usually decreases hyperpreda-
tion (when compared to the basic model); however, there can be
an increase in hyperpredation when the native prey is the
stronger apparent competitor. Previous works on hyperpredation
have not taken these factors into account. Likewise, previous
work on shared predation have rarely demonstrated apparent
predation.

It is important to notice that hypopredation is beneficial to
native prey whereas hyperpredation is not (Fig. 4a). In the Holling
type II functional response model, we found that hypopredation
occurs exactly when the rabbit handling time cost (b) is greater
than the rabbit eating benefit (b), a condition called poisoned prey.
This is a reference to the term ‘poisoned pawn’ from chess, where
taking a pawn leaves the taker in a worse position in the long run.
We found that hypopredation can lead to three fates for the
generalist predator depending on the size of the loss (negative
profit) when eating rabbits, i.e. the difference between rabbit
handling time cost and rabbit eating benefit. Firstly, when this
loss is small, predator numbers increase, although to a smaller
degree than in scenarios of hyperpredation (Fig. 4b). This increase
occurs because it is better to eat mildly bad food than spending
more time searching for food and not eating. Secondly, for
intermediate losses, the invasion of rabbits will cause a reduction
in predator numbers (Fig. 4c). This reduction occurs because
reducing the time spent searching for prey is not enough to
compensate for the time spent handling rabbits. Lastly, when the
loss is large, the invasion of rabbits leads to the extinction of the
predator (Fig. 4d). Here, the predator spends so much of its time
handling the introduced prey without getting much nutritional
benefit that the predator starves to death.

The existence of hypopredation and poisoned prey stands in
marked contrast to hyperpredation. Under hyperpredation, the
native prey is under threat. Hypopredation caused by poisoned
prey is beneficial for the native prey, but the predator is likely to
be under threat. In many ecological systems, the native prey and
predators are usually the focus of conservation efforts. Conse-
quently, whether hyperpredation or hypopredation occurs and
their strength are of great interest to conservationists. In the
Macquarie Island Cat–Rabbit–Bird system (Courchamp et al.,
1999, 2000; Zhang et al., 2006), it is the native prey that is the
focus of conservation actions, with various control actions being
taken against cats and rabbits. For example, cats have been
successfully eradicated from Macquarie Island in the 1990s,
whereas rabbits have been infected with myxomatosis
(Bergstrom et al., 2009). In the Eagle–Pig–Fox system in the
Californian Channel Islands, there is a conflict of interest between
the native prey, the critically endangered Island Fox (Urocyon

littoralis), and the predator, the protected Golden Eagle (Aquila

chrysaetos) (Roemer et al., 2001; Courchamp et al., 2003). In this
system, the ideal scenario would be that the non-native Feral Pigs
(Sus scrofa) also present on the island are a mildly poisoned prey.
In this case, an increase in both island fox and golden eagle
numbers would occur. Although this is a hypothetical scenario,
there could be systems with parameter values where
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hypopredation occurs due to poisoned prey, particularly given
that Holling type II functional responses are considered to be
ubiquitous in nature.

In comparison with the apparent mutualism found in Abrams
and Matsuda (1996), the hypopredation in this paper only
requires a Holling type II functional response; additional density
dependence in the predator is not necessary for the native prey to
benefit. Given this, hypopredation via apparent predation should
exist in their model (Abrams and Matsuda, 1996). The parameter
values where apparent predation should occur were dismissed
because the predators calorific intake would decrease (in the
short term) if they added the invading prey to their diets.
However, we have shown that a mildly poisoned prey can benefit
the predator in the long run.

There seems to be a lack of literature around the (þ ,�)
indirect interaction under shared predation, named apparent
predation or sometimes indirect antagonism (Huang and Sih,
1990), apparent exploitation (Whelan et al., 2003) or contra-
mensualism (Arthur and Mitchell, 1989). Holt (1983) found
short-term apparent predation based on the analysis of isoclines.
Likewise, Abrams (1987), Holt and Lawton (1994) and Whelan
et al. (2003) state that short-term apparent predation can occur.
In contrast, it is long-term, equilibrium-based apparent predation
(where birds are the apparent predator) that causes hypopreda-
tion in this paper.

Although not found in this paper, there could be scenarios
where the native prey are the apparent prey, resulting in
hyperpredation via apparent predation and not apparent compe-
tition. This could happen in the Holling model by symmetry; if we
changed the initial condition from a Cat–Bird steady state to say a
Rabbit–Bird steady state with a cat invasion and birds acting as
poisoned prey (a4a). However, doing so would mean that the
model would no longer follow the Cat–Rabbit–Bird scenario of
Macquarie Island.

The invasion of rabbits can also cause Cat–Rabbit–Bird oscilla-
tions that can cloud the patterns of hyper-/hypopredation. These
oscillations can be extreme, possibly resulting in stochastic
extinctions of one or more species. In particular, the native prey
is vulnerable when maximum hyperpredation is high. Previously,
oscillations have not been considered as affecting hyperpredation,
even if the models used should exhibit them; for example, the
model in Zhang et al. (2006) should contain a region (in para-
meter space) of stable oscillations much like the Holling model in
this paper. By contrast, Courchamp et al. (1999) omitted oscilla-
tions so that the model analysis would not be too complex.
Abrams et al. (1998) focused on oscillating populations, in
particular populations that oscillate in the one predator–one prey
subsystem (whereas in this paper, the Cat–Bird steady state is
stable); however, they used the time average to demonstrate that
apparent predation can occur. As already mentioned in the
methods section, using the time average hides a possible danger
of large oscillations. We believe that the extrema of oscillations
may be of great interest to conservationists, especially those who
focus on systems that have small populations like on many
isolated islands. The occurrence of oscillations is important since
it could (i) result in the stochastic extinction of an endangered
native species, or (ii) be helpful in eradicating pest species. Hence,
the onset of large-amplitude cycles can be seen as a ‘double-
edged sword’ (Oliveira and Hilker, 2010).

The results in the predator interference and non-predatory
competition models are very similar. This is no surprise given that
both restrict the growth in predators. When the native prey is the
weaker apparent competitor, these restrictions to predator
growth reduce hyperpredation. However, if the native prey is
the stronger apparent competitor, then the restricted predator
allows for (larger) invasions of the introduced prey, which in turn
increases hyperpredation. The reason for this increase is that a
generalist predator can act as an immune system for isolated
islands, protecting the island from invasion. The level of protec-
tion is based on the size of the predator population maintained by
native prey. Adding some competition or interference between
predators reduces the predator population, weakening the
immune system and thus reducing the protection from invasion,
and can allow an invasion of rabbits if the native prey is the
stronger apparent competitor. In turn, the numbers of predators
increase from this larger food source which leads to an increase in
hyperpredation.

Between predator interference and non-predatory competi-
tion, the former has the stronger effect on hyperpredation since it
both restricts predator numbers and the functional response
whereas the latter only restricts predator numbers. The context
of this is that high interference or competition among predators
allows for many more potential invaders; invaders that could
have detrimental effects on the native prey, by causing hyperpre-
dation, and on the rest of the ecosystem.

The discussion on predator interference is based on a simpli-
fication of the Beddington–DeAngelis functional response model.
This simplification was done by setting prey handling times to
zero; allowing us to separate the consequences of predator
interference from its combination with prey handling times. We
do not expect that a full Beddington–DeAngelis functional
response would lead to significantly different results to those of
the predator interference model once the properties of the Holling
type II model like hypopredation have been taken into account. In
particular, we suspect a full Beddington–DeAngelis functional
response can either result in apparent competition or apparent
predation, depending on whether the alternative prey is a
poisoned prey. This contrasts with Abrams and Matsuda (1996),
where combining a Holling type model with a non-predatory
competition model leads to apparent mutualism.

Such a Beddington–DeAngelis functional response has already
been put forward, namely in the pure apparent competition
model by Zhang et al. (2006). However this and other models
(Courchamp et al., 1999, 2000, 2003; Roemer et al., 2001, 2002)
have largely overlooked the limitations of hyperpredation or the
existence of hypopredation because of a focus on demonstrating
hyperpredation and its application to control strategies.

The work in this paper is based on deterministic models and
stability analysis. This ignores important factors like the stochas-
ticity of real biological systems. Likewise, the speed of conver-
gence to steady state and exact time trajectories have not been
considered, although time profiles were used to establish how
long transient dynamics last. This does limit the direct application
of these results on control of invasive species, but the necessary
time trajectories are easy to obtain numerically.

There are many other factors that could be considered to limit
or increase hyperpredation. For example, spatial and temporal
factors are likely to influence hyperpredation, especially if there
are spatial or temporal obstacles separating the native and
introduced prey or if refuges exist. Such obstacles could include
difficult or impassible terrain or seasonal inactivity or migration
that separate the prey and/or predators. Investigations of co-
invading rabbits and cats in a spatially extended model have
already been done (Gaucel et al., 2005; Gaucel and Pontier, 2005).
They demonstrate that local and global extinctions of the native
birds can occur. Likewise, habitat partitioning can encourage
apparent competitors to coexist where they would not in a
homogeneous environment (Holt, 1984).

In the models in this paper, the predator is assumed to be
opportunistic, preying on whatever it can find. We have shown that
this is not a good strategy to employ for a Holling type II functional
response if one of the prey either has little nutritional benefit or a
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large handling time as this will lead to a large decline of predator
numbers up to and including extinction. It is clear that predators
could have different predation strategies than that of the opportunist,
especially with respect to prey switching. Many existing hyperpreda-
tion models incorporate some sort of prey switching (Courchamp
et al., 1999, 2000; Roemer et al., 2001, 2002; Zhang et al., 2006),
although again most choose the predator as opportunistic. There is
also a variety of prey switching strategies in shared predation
modelling that go beyond an opportunistic predator (many listed in
Harmon and Andow, 2004).

Some methods of prey switching could lead to hypopredation:
for example, if the predator focused only on the prey that can
support the larger predator population. Although this is not likely
to be the optimal strategy, it is a better strategy when predator
numbers decline in the Holling type II model. In this case, if the
bird can sustain the larger population of predators, the alternative
prey is ignored and hyperpredation does not occur. However, if
the rabbit can sustain a larger population, the bird is then ignored
and hypopredation occurs. Hence, with this predation strategy,
hyperpredation will not occur.

When there is a decline in predators following the introduction of
the poisoned prey, it is better to ignore the poisoned prey. One would
expect that the predator would evolve to ignore the poisoned prey,
probably via some adaptive dynamics argument. This probably means
that the use of a pure two-prey Holling type II functional response for
all time is unrealistic.

This discussion in prey switching is actually a necessity for
cats on Macquarie Island. This is due to the temporal and spatial
factors discussed earlier. On the island, many birds are migratory
and many areas of the island are devoid of birds (Taylor, 1979).
The near temporal and spatial uniformity of rabbits on the island
following the invasion allows cats to survive at times and in
places where birds are scarce (Courchamp et al., 2000). Similarly,
temporal effects have already been considered in the Eagle–Pig–
Fox system (Roemer et al., 2001). From these arguments, it is clear
that the strategy of prey switching is key to hyperpredation, and
is well worth further investigation.

In this paper, we have investigated a number of mechanisms
(predator interference, non-predatory competition and predator
saturation) that diminish hyperpredation effects. That is, a native
prey is less severely affected by the invasion of an alternative prey
in the presence of a shared predator. In fact, there is a scenario
where the invasion of an alternative prey actually benefit the
native prey. This case is best described as hypopredation via
Fig. A1. Regions of stability in parameter space for the basic model. Assuming the Cat–B

must have a41 (white region). The grey region is where there is no valid Cat–Bird s

extinction. The predator interference and non-predatory competition models have the

rR¼3 and g¼ 1.
apparent predation, caused by poisoned prey. This has funda-
mental implications for the understanding of ecological commu-
nities and simple food web models. In particular, the food web
module of shared predation may come in many forms, such as
apparent competition, apparent predation and apparent mutual-
ism (Fig. 1). The management of biological invasions and ecolo-
gical restoration programmes should be aware of the diverse
consequences of the establishment (or eradication) of alternative
prey species. In particular, this calls for a holistic view of control
methods that take into account all species interacting rather than
only the target species.
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Appendix A. Steady states

As discussed in the stability analysis section of the paper, the
steady states of all the models except the Holling type II model can be
qualitatively stable (May, 1973; Jeffries, 1974). For the Holling type II
model, this is not the case, and stability is not easy to determine.
Consequently, here we will give the steady states of the basic,
predator interference and non-predatory competition models and
their stability conditions with no further justification. For the Holling
type II model, more detail is required.

In all four models, the steady states (0,0,0), (1,0,0) and (0,1,0) are
unstable and so will not be approached for all strictly positive initial
conditions (i.e. B,R,C40).

A.1. Basic model steady states analysis
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Fig. A2. Regions of stability in parameter space for the Holling type II model. The saturating functional response adds an oscillatory region which has been approximated

based on contour plots. Assuming the Cat–Bird steady state exists as an initial condition (with a small rabbit perturbation), we must have a�a41 (white region). The grey

region is where there is no valid Cat–Bird steady state. Notice that the stronger apparent competitor will never be driven to extinction. For (a), rB¼3, rR¼2, whereas for (b),

rB¼2, rR¼3. Other parameters: g¼ 1, a¼ 1:5 and b¼ 1:5.
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A.2. Non-predatory competition
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gb

rR
þhð2�bÞ

� �2

þ4h2
ðb�1Þ

s

2h2
:

This exists when b41, and is stable when rBoCn=ð1þhCn
Þ.
�
 ð1�Cn=rBð1þhCn
Þ,1�gCn=rRð1þhCn

Þ,Cn
Þ, where Cn

¼ ð�Pþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
þ4h2

ðaþb�1Þ
q

Þ=2h2 and P¼ ððrRaþgrBbÞ=rBrR �hðaþb�

2ÞÞ. This exists when aþb41, rB4Cn=ð1þhCn
Þ and rR4gCn=

ð1þhCn
Þ, and is always stable.

A.4. Holling type II model

As mentioned in Section 3, for the Holling type II model, the
qualitative stability criteria (see May, 1973; Jeffries, 1974) are not a
short cut for the 3D Routh–Hurwitz criteria if the predator is present.
Without the qualitative stability criteria, the full 3D Routh–Hurwitz
stability criteria are required. However, this is not straightforward.
The argument used for the stability of Cat–Bird and Cat–Rabbit
steady states is to reduce the system to the Cat–Bird (R¼0) and Cat–
Rabbit (B¼0) plane. The stability of these are comparatively easy to
compute via 2D Routh–Hurwitz conditions as they are the usual
Holling type II predator–prey model. In particular, this model is well
known for Hopf bifurcation induced periodic solutions when a or b is
large, leading to the paradox of enrichment. These 2D results can be
substituted back into the full 3D Holling model since the Jacobian has
only one term in the dR=dt or dB=dt row, i.e. growth/decay in R or B is
determined by this term.

Stability conditions of the Cat–Rabbit–Bird steady state are
complicated and have been omitted, but all other steady states
are unstable when this steady state exists. However, Cat–Rabbit–
Bird periodic solutions do exist (Fig. A2) suggesting the Cat–
Rabbit–Bird steady state can be unstable via a Hopf bifurcation.
�
 (1,1,0). This always exists, and is stable when ða�aÞþðb�bÞo1.

�
 ð1=ða�aÞ,0,rBaða�a�1Þ=ða�aÞ2Þ. This exists when a�a41,

and is stable when rRogCn=aBn
¼ grBð1�1=ða�aÞÞ and

rBð1�2Bn
Þ�Cn=ðaBn

Þ
2o0. There is a Hopf bifurcation at

rBð1�2Bn
Þ ¼ Cn=ðaBn

Þ
2.
�
 ð0;1=ðb�bÞ,rRbðb�b�1Þ=gðb�bÞ2Þ. This exists when b�b41,
and is stable when rBoCn=bRn

¼ ðrR=gÞð1�1=ðb�bÞÞ and
rRð1�2Rn

Þ�gCn=ðbRn
Þ
2o0. There is a Hopf bifurcation at

rRð1�2Rn
Þ ¼ gCn=ðbRn

Þ
2.
�
 ðBn,Rn,rBð1�Bn
ÞðaBn

þbRn
ÞÞ, where Bn

¼ ðrRð1�ðb�bÞÞþgrBðb�

bÞÞ= ðrRða�aÞþgrBðb�bÞÞ and Rn
¼ ðgrBð1�ða�aÞÞþrRða�aÞ=

rRða�aÞþgrBðb�bÞÞ. This exists when ða�aÞþðb�bÞ41, Bn40
and Rn40. Stability is unknown but coexistent periodic orbits
can occur.

A.4.1. The Cat–Rabbit–Bird steady state when b¼ b

Substituting b¼ b into the expression for Bn gives Bn
¼

1=ða�aÞ, which is the same value as the Cat–Bird steady state.
This means that the bird population is unchanged following a
rabbit invasion and thus there is no hyperpredation.

Likewise, substituting Bn
¼ 1=ða�aÞ into Cn gives

Cn
¼ rB 1�

1

a�a

� �
a

a�a
þbRn

� �
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After some rearrangement we get

Cn
¼

rBaða�a�1Þ

ða�aÞ2
1þ

bRn
ða�aÞ
a

� �
¼

rBaða�a�1Þ

ða�aÞ2
1þ

bRn

aBn

� �

Notice that the first part of the right hand side is exactly the cat
population of the Cat–Bird steady state. Consequently, we have an
increase in the number of cats following the invasion of rabbits,
which depends on the relative total nutritional benefit of preying
upon rabbits and birds.

Given these pieces of information, it is possible to demonstrate
that the predation pressure upon birds is nevertheless unchanged
by the invasion of rabbit; however, that is unnecessary since we
have already shown that the bird population is unchanged.
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