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Abstract
Preytaxis is the attraction (or repulsion) of predators along prey density gradients
and a potentially important mechanism for predator movement. However, the impact
preytaxis has on the spatial spread of a predator invasion or of an epidemic within
the prey has not been investigated. We investigate the effects preytaxis has on the
wavespeed of several different invasion scenarios in an eco-epidemiological system.
In general, preytaxis cannot slow down predator or disease invasions and there are
scenarios where preytaxis speeds up predator or disease invasions. For example, in the
absence of disease, attractive preytaxis results in an increased wavespeed of predators
invading prey, whereas repulsive preytaxis has no effect on the wavespeed, but the
wavefront is shallower. On top of this, repulsive preytaxis can induce spatiotemporal
oscillations and/or chaos behind the invasion front, phenomena normally only seen
when the (non-spatial) coexistence steady state is unstable. In the presence of disease,
the predator wave can have a different response to attractive susceptible and attractive
infected prey. In particular, we found a case where attractive infected prey increases
the predators’ wavespeed by a disproportionately large amount compared to attractive
susceptible prey since a predator invasion has a larger impact on the infected popula-
tion.Whenwe consider a disease invading a predator–prey steady state, we found some
counter-intuitive results. For example, the epidemic has an increased wavespeed when
infected prey attract predators. Likewise, repulsive susceptible prey can also increase
the infection wave’s wavespeed. These results suggest that preytaxis can have a major
effect on the interactions of predators, prey and diseases.
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1 Introduction

For a species (or infection) to successfully invade, it must first be introduced, then
establish locally and then spread (Petrovskii and Li 2006), usually in the form of a
travelling wave. There are many examples of predator invasions that are considered to
have spread like a travelling wave. The Colorado potato beetle spread rapidly across
mainland Europe during the mid-twentieth century (Johnson 1967; Begon et al. 2002),
damaging potato crops as it spread. Red foxes have spread across much of mainland
Australia over the last 140years after being introduced in south Victoria around 1871,
with major impact on birds and medium-sized mammals (Dickman 1996). Likewise,
there are many epidemics that also moved like a travelling wave, from the Black Death
during fourteenth century Europe to the spread of rabies across continental Europe
(Murray 2003, Chapter 13; Shigesada and Kawasaki 1997 and Langer 1964). Other
famous invasions that have moved like travelling waves are the muskrat invasion of
Europe (Skellam 1951; Britton 2003) and the grey squirrel invasion of the British Isles,
which has had a massive impact on the native red squirrel (Middleton 1930; Lloyd
1983; Tompkins et al. 2003; Bell et al. 2009).

Most models that involve spatial movement assume that prey and predators (espe-
cially when using partial differential equations) move by diffusion only. This means
that predators and prey move in a random manner with no bias or external stimuli.
However, movement is often not random. In particular, there are many external factors
that attract or repel prey and predators, be it chemical attractant/repellent gradients
(chemotaxis), gradients of oxygen (aerotaxis) or gradients of prey density (preytaxis).

The term ‘preytaxis’ was first coined in Kareiva and Odell (1987), where they mod-
elled movement patterns of foraging Ladybirds. There are two ways for modelling
preytaxis, ‘direct’ and ‘indirect’ (Tyutyunov et al. 2017). Direct preytaxis involves
incorporating a flux in the predator dynamics that is dependent on gradients of prey
density (as used in Kareiva and Odell 1987; Grünbaum 1998; Lee et al. 2008, 2009;
Ainseba et al. 2008), whereas indirect preytaxis involves incorporating a separate
predator velocity equation where predators accelerate according to prey gradients
(with some diffusion term to harmonise predator velocities with neighbours) (as seen
in Arditi et al. 2001; Sapoukhina et al. 2003; Chakraborty et al. 2007; Tyutyunov et al.
2017). In other words, direct preytaxis means the predators’ velocity is proportional
to prey gradients (a formulation akin to other classical taxis models like chemotaxis),
whereas indirect preytaxis means predators accelerate towards a velocity that is pro-
portional to prey gradients.

These two different schools of modelling preytaxis seem to give different results.
Direct preytaxis is found to have a stabilising effect, limiting spatiotemporal oscilla-
tions and chaos (Lee et al. 2009), whereas indirect preytaxis can only have a stabilising
effect for intermediate values of (attractive) preytaxis, i.e. strong preytaxis can induce
spatiotemporal chaos and oscillations (Sapoukhina et al. 2003). This difference may
be attributed to the fact that there is some ‘inertia’ or delay with indirect preytaxis;
when predators reach the peak of prey density they no longer accelerate but still have
velocity and thus can overshoot. In this paper, the direct, flux-based method for prey-
taxis, is used, largely because instantaneous velocity changes in predators seem to be
a reasonable assumption that is relatively simple and tangible.
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Preytaxis and Travelling Waves in an Eco-epidemiological Model 997

In previous preytaxis papers, the focus has largely been on pattern formation
(Chakraborty et al. 2007; Ainseba et al. 2008; Lee et al. 2009) or on the effect prey-
taxis has for pest control (Sapoukhina et al. 2003; Lee et al. 2008). We are not aware
of studies focusing on how preytaxis alters predator invasions, the corresponding
travelling waves and their wavespeeds, although Ainseba et al. (2008) found that
predators with preytaxis and diffusion can fill a 2D domain faster than with diffusion
alone.

We are also not aware of preytaxis papers that consider the impact a disease has on a
preytactic predator–prey interaction, or the impact preytaxis has on disease dynamics.
In fact, in eco-epidemiology, there are only a handful of papers including spatial inter-
actions. Many of these spatial eco-epidemiological papers are motivated by infections
within plankton communities (Malchow et al. 2004, 2005; Hilker et al. 2006; Sieber
et al. 2007; Siekmann et al. 2008) or lynx-rabbit dynamics (Roy and Upadhyay 2015;
Upadhyay et al. 2016), whereas there are some on a general predator–prey–disease
system (Su et al. 2008, 2009; Su and Hui 2011; Ferreri and Venturino 2013).

In this paper, we will develop a spatial eco-epidemiological model that incorporates
the random (diffusive) movement of predators and prey as well as predators moving
along susceptible and infected prey gradients (preytaxis). Following that, we will
consider the results of various invasion scenarios, with a particular focus on how
preytaxis affects the resulting travelling wave and its wavespeed.

2 Model Derivation

Consider a model with susceptible prey, infected prey and predators, denoted by the
densities s, i and p, respectively. Firstly, we will define the non-spatial parameters.
Let b be the per capita birth rate for prey and letm and d be the natural per capita death
rates for prey and predators, respectively. Let c be the coefficient for density-dependent
mortality caused by competition among prey, which results in logistic growth for the
prey. We assume that infection does not alter the host’s per capita birth rate b and
competition coefficient c. β is the transmissibility of the disease (in this case, the
transmissibility term for density-dependent transmission; wewill later briefly consider
frequency-dependent transmission). aS and aI are the attack rates of the predator on
susceptible and infected prey, respectively. Likewise, hS and hI are the handling times
of the predator when attacking susceptible and infected prey, respectively. μ is the
additional per capita disease-induced mortality for infected prey. And lastly, e is a
conversion coefficient of predators from eating prey.

Now, we will assume that susceptible prey, infected prey and predators experience
diffusion with coefficients DS, DI and DP, respectively. In addition to diffusion, we
assume that predators move by ‘direct’ preytaxis, which we assume is proportional to
prey gradients. This means that the preytaxis flux is pFS ∂s

∂x and pFI
∂i
∂x for susceptible

and infected prey, respectively, where FS and FI are the preytaxis coefficients for
predators following susceptible and infected prey, respectively. This form of preytaxis
is chosen because it is a relatively simple form (as FS and FI are constants and not
functions of s or i) that includes different preytaxis terms for infected and susceptible
prey. The coefficients can be positive or negative; positive coefficients mean that
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predators are attracted to prey, whereas negative coefficients mean that predators are
repelled by prey. Unless otherwise stated, all parameters are strictly positive.

∂s

∂t
= DS

∂2s

∂x2
+ b(s + i) − ms − cs(s + i) − βsi − aSsp

1 + aShSs + aIhIi
, (1)

∂i

∂t
= DI

∂2i

∂x2
+ βsi − (m + μ)i − ci(s + i) − aIi p

1 + aShSs + aIhIi
, (2)

∂ p

∂t
= DP

∂2 p

∂x2
− ∂

∂x

(
pFS

∂s

∂x
+ pFI

∂i

∂x

)
+ ep(aSs + aIi)

1 + aShSs + aIhIi
− dp. (3)

We will assume zero flux boundary conditions on the boundaries of spatial domain
[0, L], i.e. ∂s

∂x (0, t) = ∂s
∂x (L, t) = 0, ∂i

∂x (0, t) = ∂i
∂x (L, t) = 0 and ∂ p

∂x (0, t) =
∂ p
∂x (L, t) = 0 for all times t , where L is the length of the domain. Now, we non-
dimensionalise to simplify and reduce the number of parameters. Let t = τT , s = γ S,
p = δP and x = χX . Then, we choose τ such that the non-dimensional per capita
predator death rate is one (τ = 1

d ), χ such that the susceptible prey diffusion is set

to one (χ2 = DS
d ), δ such that the coefficient of the numerator of the susceptible

prey functional response (attack rate) becomes one (δ = d
aS
) and γ such that the

coefficient for susceptible prey predation in the predators’ numerical response is set
to one (γ = d

eaS
). Given this, we have:

∂S

∂T
= ∂2S

∂X2 + b′(S + I ) − m′S − c′S(S + I ) − β ′SI − SP

1 + h′
SS + aRh′

I I
, (4)

∂ I

∂T
= DR

∂2 I

∂X2 + β ′SI − (m′ + μ′)I − c′ I (S + I ) − aR I P

1 + h′
SS + aRh′

I I
, (5)

∂P

∂T
= D′

P
∂2P

∂X2 − ∂

∂X

(
PF ′

S
∂S

∂X
+ PF ′

I
∂ I

∂X

)
+ P(S + aR I )

1 + h′
SS + aRh′

I I
− P, (6)

where b′ = b
d , m

′ = m
d , c

′ = c
eaS

, β ′ = β
eaS

, h′
S = dhS

e , aR = aI
aS

(relative attack rate),

h′
I = dhS

e , DR = DI
DS

, μ′ = μ
d , D

′
P = DP

DS
, F ′

S = dFS
eaSDS

and F ′
I = dFI

eaSDS
. Likewise,

from the spatial scaling, we have that L ′ = L
√
d√

DS
.

To simplify terminology, we will drop all the primes. Now, we will replace suscep-
tible prey with a total prey class, N = S + I . Consequently, we have:

∂N

∂T
= ∂2N

∂X2 + (DR − 1)
∂2 I

∂X2 + bN − mN − cN 2 − μI − (N + (aR − 1)I )P

1 + hSN + (aRhI − hS)I
,

(7)
∂ I

∂T
= DR

∂2 I

∂X2 + β(N − I )I − (m + μ)I − cI N − aR I P

1 + hSN + (aRhI − hS)I
, (8)

∂P

∂T
= DP

∂2P

∂X2 − ∂

∂X

(
PFS

∂N

∂X
+ P(FI − FS)

∂ I

∂X

)
+ P(N + (aR − 1)I )

1 + hSN + (aRhI − hS)I
− P.

(9)
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To make analysis easier, we will gather terms. Let f (N , I ) = N+(aR−1)I
1+hSN+(aRhI−hS)I

(the functional response on all prey), g(N ) = b − m − cN (per capita growth rate of
prey in absence of disease and predation), k(N , I ) = β(N − I ) − (m + μ) − cN (per
capita net growth rate of infected prey in the absence of predation) and fI(N , I ) =

aR
1+hSN+(aRhI−hS)I

(the functional response on infected prey). Then these equations
can be written as:

∂N

∂T
= ∂2N

∂X2 + (DR − 1)
∂2 I

∂X2 + Ng(N ) − μI − f (N , I )P, (10)

∂ I

∂T
= DR

∂2 I

∂X2 + I (k(N , I ) − fI(N , I )P), (11)

∂P

∂T
= DP

∂2P

∂X2 − ∂

∂X

(
PFS

∂N

∂X
+ P(FI − FS)

∂ I

∂X

)
+ P( f (N , I ) − 1). (12)

The zero flux boundary conditions are ∂N
∂X (0, T ) = ∂N

∂X (L, T ) = 0, ∂ I
∂X (0, T ) =

∂ I
∂X (L, T ) = 0 and ∂P

∂X (0, T ) = ∂P
∂X (L, T ) = 0 for all time T . Also, for simplicity

we will assume that susceptible and infected prey only differ by the inclusion of
disease-induced mortality and different preytaxis coefficients (i.e. aR = 1, DR = 1
and hS = hI).

3 Non-spatial Dynamics

Before we analyse the spatial dynamics, in particular the wavespeeds, we first have to
get some basic understanding of the non-spatial dynamics. This is done by analysing
the steady states and their stability in the absence of diffusion and preytaxis.

– (N∗, I ∗, P∗) = (0, 0, 0). This always exists and is stable if g(0) < 0, i.e. b < m.
– (N∗, I ∗, P∗) = (N∗, 0, 0), which satisfies g(N∗) = 0

(
i.e. N∗ = b−m

c

)
.

This exists if g(0) > 0 (i.e. b > m), and is stable if k(N∗, 0) < 0(
i.e. R0 = βN∗

m+μ+cN∗ < 1
)
and f (N∗, 0) < 1 (i.e. (b − m)(1 − hS) < c)

– (N∗, I ∗, P∗) = (N∗, 0, P∗), which satisfies f (N∗, 0) = 1
(
i.e. N∗ = 1

1−hS

)
and P∗ = N∗g(N∗) = (b−m)(1−hS)−c

(1−hS)2
. This exists if hS < 1 and (b − m)(1 −

hS) > c. This is stable if the disease cannot establish in the presence of predators(
k(N∗, 0) < P∗ fI(N∗, 0), RP

0 = βN∗
m+μ+cN∗+P∗ fI(N∗,0) < 1

)
as well as g(N∗) −

cN∗ − P∗ ∂ f (N∗,0)
∂N < 0. The latter condition is the result of a Hopf bifurcation at

g(N∗) − cN∗ − P∗ ∂ f (N∗,0)
∂N = 0, and thus stable limit cycles are likely to occur

if this condition is broken.
– (N∗, I ∗, P∗) = (N∗, I ∗, 0), which satisfies k(N∗, I ∗) = 0(

i.e. I ∗ = N∗
(
1 − m+μ+cN∗

βN∗
))

and N∗g(N∗) = μI ∗. This equation forms a

quadratic in terms of N∗, which always has one positive and one negative solu-
tion. This exists if 0 < I ∗ < N∗. It is stable when f (N∗, I ∗) < 1.

123
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– (N∗, I ∗, P∗) = (N∗, I ∗, P∗), which satisfies f (N∗, I ∗) = 1, k(N∗, I ∗) =
fI(N∗, I ∗)P∗ and g(N∗) = μI ∗ + P∗. This exists when P∗ > 0 and N∗ >

I ∗ > 0. We have not investigated its stability, but understand that this steady state
can lose its stability via a Hopf bifurcation.

It is important to note that, at most, only one steady state is stable. There is no
bistability between steady states. This does not say anything about possible bistability
involving cyclic and chaotic attractors (like those in Bate and Hilker 2013a). If we
assume that aR = 1 and hS = hI, then the non-spatial model would be the same as
Bate and Hilker (2014) but with a Holling Type II functional response instead of a
Holling Type IV functional response.

4 Spatiotemporal Dynamics

From this point on, we will consider the effect preytaxis has on various invasion sce-
narios; (1) predator invasion in the absence of infected prey, (2) predator invasion in
the presence of infected prey and (3) disease invasion in the presence of predators,
with a particular focus on the wavespeed of the resulting travelling wave invasion. We
assume that the ‘native’ species are at their corresponding steady state (with parameter
values chosen so that this is stable when ignoring spatial effects) everywhere in the
spatial domain of [0,250], but we will introduce an invader as a step function with
invader density of 0.1 for x ∈ [0, 20] and invader density of 0 elsewhere. In such
invasion scenarios, the solutions converge over time to travelling waves.

In Appendix A, we find an analytic minimum wavespeed by looking for travelling
wave solutions with constant wavespeeds. We use the transformation Z = X − ωT
(where ω is the constant wavespeed), linearise ahead of the wave (i.e. at the native
steady state) and look at the eigenvalues to see if there are any complex eigenvalues
that would lead to unrealistic travelling waves (negative populations). This would be
sufficient for finding the actual wavespeed if we have ‘linear determinacy’ (Lewis et al.
2002), i.e. linearising ahead of the travelling wave gives the wavespeed. In single-
species systems, it is sufficient for there to be no Allee effect assuming a constant
diffusion coefficient (Aronson and Weinberger 1975, 1978; Shigesada and Kawasaki
1997). Many systems have been shown to exhibit linear determinacy, but the theory
for linear determinacy is lacking for multispecies systems (Bell et al. 2009), with a
notable exception of competitive/cooperative systems (Lewis et al. 2002). Despite the
lack of theory, analogous arguments to scalar systems (like linearising in front of the
wave) provide a great deal of success in calculating the wavespeed (Malchow et al.
2008; Bell et al. 2009), i.e. linear determinacy has been shown to be true in many
multispecies systems, usually numerically. However, this is not always true, there are
cases where the actual wavespeed is substantially faster than the calculated minimum
wavespeed (Hosono 1998).

The minimum wavespeeds calculated in Appendix A are independent of preytaxis
terms, since these wavespeeds are calculated at the leading edge of the invasion front
(where the system is near the native steady state, with negligible gradients) which
results in negligible preytaxis terms. In the absence of preytaxis, we expect that the
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travelling wave will form and will move at the minimum speed ωcrit (after some
transient), since the initial condition has compact support (as the initial condition for
the invader is zero beyond x = 20 ). Proving mathematically that the travelling wave
moves at theminimumwavespeed is very difficult, even for simplermodels (Edelstein-
Keshet 1988; Murray 2003), but we can verify numerically that these wavespeeds are
attained (after some transients).

We numerically solve the predator–total prey–infected prey system (10–12) using
a Strang splitting scheme (Chapter 18 of LeVeque 1992; Tyson et al. 2000), where
the diffusion, preytaxis and local population growth terms are solved as separate steps
with appropriate numerical routines (using a full timestep ofmidpointmethod for local
growth, sandwiched by two half-timesteps of (two-step) Lax–Wendroff for preytaxis
and two half-timesteps of Crank–Nicolson for diffusion). This method overcomes
issues around finding a single method that can deal with diffusion and preytaxis,
simultaneously. A full discussion of the numerical methods used is available in
Appendix B.

4.1 Predator Invasion in the Absence of Infected Prey

4.1.1 Without Preytaxis (FS = 0)

In the absence of preytaxis, we have a reaction–diffusion predator–preymodel. Similar
models have been analysed elsewhere (for example Murray 2003). During the initial
stages of the invasion, the dynamics are dominated by the predator establishing and
growing locally at the expense of prey (Fig. 1a). By the time T = 5, a wave front
is largely established, with a predator–prey coexistent steady state behind the wave
front and a prey-only steady state ahead of the wave. Figure 1b demonstrates that the
wave follows the ‘moving line’ (representing where the predator range starting from
its initial distribution would be if it moved at the analytic minimumwavespeed), which
tells us that the predator invasion wave is moving at the same speed as the analytically
derived minimum speed ωcrit . Behind the wavefront, there are some dampened spa-
tiotemporal oscillations. These oscillations are consistentwithwhatwould be expected
since with the chosen parameter values, the predator–prey steady state is a stable
focus.

4.1.2 With Attractive Preytaxis (FS > 0)

Now, incorporating preytaxis into the predator–prey dynamics gives us a reaction–
diffusion–taxis predator–prey model. First, let’s consider attractive preytaxis, i.e.
predators are attracted to places of high prey density.

At early stages, the populations are distributed similarly to the case without taxis,
with Fig. 2a looking nearly identical to Fig. 1a. However, over time, results change
substantially.Whereas in Fig. 1b, we have that thewave travels at the same speed as the
‘moving line’, Fig. 2b shows that the wave front overtakes the ‘moving line’, telling us
that the travelling wave is moving at a speed significantly faster than the analytically
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Fig. 1 Predator invasion in the absence of disease. No preytaxis. a Shows the initial stages of predator
invasion, where the predators grow locally up to steady state and spread to converge to the shape of the
travelling wave. b Shows that after this convergence, the wave travels with a speed that agrees with the
analytic speed. For (a) the times are T = 0, 1, 2, 5 (shown in different curves) whereas for (b) the times
are T = 5, 10, 25, 50, 100 (shown as different panels, from top to bottom). The dotted lines represent
total prey density, whereas the bold lines represent predator density. The grey vertical lines in (b) represent
the expected position of the wavefront according to the analytical wavespeed. Parameter values: b = 1,
m = 0.5, c = 0.1, hS = 0.3, DP = 1 and FS = 0
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Fig. 2 Predator invasion in the absence of disease. Attractive preytaxis. a Shows the initial stages of predator
invasion, where the predators grow locally up to steady state and spread to converge to the shape of the
travelling wave. b Shows that after this convergence, the wave travels faster than the analytic speed. The
times and lines used are the same as in Fig. 1. Parameter values: same as in Fig. 1, except FS = 1

derived minimum speed ωcrit . In other words, attractive preytaxis has increased the
predator invasion wave speed.

To demonstrate this effect further, we have set predator diffusion DP = 0 in Fig. 3.
By doing so, the analytic wavespeed of the predator wave is zero, which would suggest
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Fig. 3 Predator invasion in the absence of disease. Attractive preytaxis, no predator diffusion. a Shows
the initial stages of predator invasion, where the predators grow locally up to steady state and spread to
converge to the shape of the travelling wave. b Shows that after this convergence, the wave moves (at some
wavespeed) where it should not in the absence of preytaxis. The times and lines used are the same as in
Fig. 1. Parameter values: same as in Fig. 1, except FS = 1 and DP = 0. The initial condition is a smoothed
approximation of the step function (0.05(1 − tanh(x − 20))). Results for the normal step function initial
conditions are in Fig. 13 (in Appendix B)
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Fig. 4 Predator invasion in the absence of infected prey. Attractive preytaxis, various values of predator
diffusion coefficient. Position of wavefront and analytic wavefront from the analytic minimum wavespeed
after t = 50. We find that for low diffusion coefficients, attractive preytaxis leads to a large increase in
wavespeed, whereas for larger diffusion coefficients predators have wavespeeds much closer to the analytic
wavespeed. The wavefront is measured as the point in space where predator density is 0.1. Unlike other
figures, the numerical solutions are for tstep = 0.005 and xstep = 0.1. Note that DP = 0 and DP = 1
correspond to the fourth panels of Figs. 3b, 13b and 2b, respectively. Parameter values: other than the
varying DP, the same as in Fig. 2

that the predator can only grow in regions in which it is already established.1 However,
Fig. 3 (and Fig. 13, in Appendix B) clearly shows a travelling wave with constant
positive wavespeed. This wavespeed is substantial too; without diffusion the travelling
wave has moved to approximately x = 195 by t = 100 (about 175 spatial units ahead
of the moving line), whereas with diffusion at DP = 1 (Fig. 2b), the wave moved to
approximately x = 245 by t = 100 (only about 25 spatial units ahead of the moving
line). Together, these wavespeeds suggest that increasing diffusion will reduce the
effect of preytaxis, a phenomenon demonstrated further in Fig. 4, where the increase
inwavespeed frompreytaxis largely disappearswhen diffusion is increased to DP = 2.
Presumably, the reduced impact of preytaxis on wavespeed due to increased diffusion
is largely the result of diffusion flattening the wavefront, reducing prey gradients and
thus the strength of preytaxis.

4.1.3 With Repulsive Preytaxis (FS < 0)

In this subsection, we will assume that predators find (susceptible) prey repulsive and
thus move down prey gradients. This assumption may not seem that realistic at first

1 Actually, since the smoothed initial condition in Fig. 3 has predators everywhere, a wave might form from
growth alone, given enough time. However, we get the same wavespeed from a step function, which tells
us that the travelling wave depends on preytaxis, and not just on the growth of the initial condition (Fig. 13,
in Appendix B). The change to a smoothed initial condition was made because the numerical regime for
preytaxis (Lax–Wendroff) leads to some dampened ‘spikiness’.
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glance, although possible cases where it may occur are presented in the Discussion.
However, the idea of repulsive infected prey seems more plausible, and the results in
this subsection will help in understanding the results that include infected prey.

Figure 5a shows that by time t = 5, the predator distribution is far from uniform
around the wavefront, especially as a spike in predator density (with a corresponding
trough in prey density) is formed. The wavefront stabilises as time goes on (Fig. 5b),
and moves at the analytic wavespeed. Immediately behind the wave, some dampened
oscillations take place, which is consistent with the fact that the predator–prey steady
state is a stable focus in the absence of spatial effects. However, further behind the
wavefront, some spatiotemporal oscillations and/or chaos appear. In this case, the
predator–prey steady state is not actually stable once spatial effects are taken into
account.

Why would repulsive preytaxis induce oscillations? Well, since the steady state is
a focus (in the absence of spatial effects), we would expect some (damped) oscilla-
tions. Given the existence of damped oscillations, we can suppose there are spatial
regionswith (relatively) high predator density and (relatively) low prey density. In such
regions, we expect both prey and predator densities to decline further, prey because
of the large numbers of predators, and predators because of the lack of prey to sus-
tain them. However, if nearby there are regions with higher prey densities and lower
predator densities, then the predators would migrate into the high predator–low prey
region. If this movement is strong enough to replenish the predators lost from lack of
prey and diffusion, then the peak in predator density is sustained. A similar argument
applies to the persistence of troughs in predator density.

So why is the wavespeed for repulsive preytaxis the same as the analytically
derived wavespeed? Well, the wave can not be any slower, as the analytic wavespeed
was calculated as a minimum wavespeed. But repulsive preytaxis could be expected
to slow down the wave, by the same argument as attractive preytaxis speeding up
the wave. We suspect that instead, repulsive preytaxis picks a travelling wave that
would otherwise move faster than the minimum wavespeed and be unstable in the
absence of repulsive preytaxis. In this case, the predator wavefront is much shal-
lower, which has been associated with faster travelling waves before (Murray 2002,
page 446, shows this for the single-species Fisher model). A way of understand-
ing why shallower waves are faster is that shallower waves have a larger spatial
region where total population growth is large (regions both ahead and behind of
the wavefront do not contribute much to the growth of the invading population),
and thus should have a greater growth overall and thus a greater wavespeed. The
repulsive preytaxis slows down this shallower, faster wave to the analytic minimum
wavespeed.

4.2 Predator Invasion in the Presence of Infected Prey

4.2.1 With Attractive Preytaxis

Earlier, we demonstrated that attractive preytaxis in the disease-free case can increase
substantially the wavespeed for a predator invasion. However, looking at the simula-
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Fig. 5 Predator invasion in the absence of disease. Repulsive preytaxis. a Shows the initial stages of predator
invasion, where the predators grow locally up to steady state and spread to converge to the shape of the
travelling wave. b Shows that after this convergence, the wave travels with a speed that agrees with the
analytic speed. The times and lines used are the same as in Fig. 1. Parameter values: same as in Fig. 1,
except FS = −3
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Fig. 6 Predator wave invading an endemic prey-only steady state. Predators are attracted to (a) susceptible
prey (FS = 10, FI = 0) and (b) infected prey (FS = 0, FI = 10). In (a) the predator wave is marginally
faster than the analytic wavespeed, whereas in (b) the predator wave is much faster than the analytic
wavespeed. The dotted lines represent total prey density, the bold lines represent predator density and the
dash-dotted line represent infected prey. The times are (from top to bottom) T = 5, 10, 25, 50, 100. The
grey vertical lines represent the expected position of the wavefront according to the analytical wavespeed.
Other parameters: same as in Fig. 1, with additional parameters β = 1, μ = 0.2, hI = 0.3, aR = 1 and
DR = 1
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tion in Fig. 6a, if susceptibles attract predators, then the wavespeed2 is only slightly
increased in comparison with the case without preytaxis, despite the fact that sus-
ceptibles are much more attractive here than earlier in Fig. 2. However, if infected
prey attract predators, like in Fig. 6b, then the wavespeed of the predator invasion is
substantially faster than both the travelling waves for no preytaxis and for attractive
susceptible prey. Well, how can this be explained? We suspect that this phenomenon
is related to the effect the predator has on each prey class. The effect of the predator on
susceptible prey is that they are reduced by predation. However, infected prey take a
much greater hit; not only do they experience the additional predation like susceptible
prey, but also there are fewer susceptible prey to infect. Consequently, an invasion of
predators has a much greater effect on infected prey; a result that is general for such
models where predators do not discriminate between susceptible and infected prey
(Packer et al. 2003), since Eqs. (10–12) are equivalent to exploitative competition ‘in
disguise’ between predators and disease prevalence (Sieber and Hilker 2011). This
means that the gradient of infected prey is steep, whereas the susceptible prey gradient
is considerably shallower (the changes in total prey density is largely explained by
the changes in infected prey density). Consequently, infected prey have steeper gra-
dients and thus a greater preytaxis effect than the shallower gradients of susceptible
prey.

4.2.2 With Repulsive Preytaxis

Figure 7a, b shows that repulsive preytaxis does not slow the wave for repulsive
susceptible and infected prey, respectively. However, the predator wave in Fig. 7b is
much shallower than the predator waves in Fig. 6 (and is also much shallower than
when there is no preytaxis). This suggests a similar phenomenon to what happened
without the disease, namely that repulsive preytaxis can lead to shallower wavefronts.
However, since the wave is not as shallow in Fig. 7a as it is in Fig. 7b, we can conclude
that infected prey can have a stronger repulsive preytaxis effect than susceptible prey.
This is for the same reasons too, i.e. the wavefront has a much larger infected prey
gradient since predators have a bigger impact on the infected prey class. Also, just as
we had in the absence of the disease, repulsive preytaxis can lead to spatiotemporal
oscillations and/or chaos.

4.3 Disease Invasion in the Presence of Predators

If the predator does not exhibit preytaxis, then the disease spreads at the same speed
as the analytic minimum wavespeed as the travelling wave follows the moving line
(Fig. 8). It is worth noting that because of the presence of predators, it is harder for
a disease to become endemic, due to both the additional deaths of infected prey from
predation and the reduced susceptible prey density from such predation. Consequently,
a significant increase in transmissibility is needed for the disease to establish. Addi-
tionally, the invasion of the disease (once fully established locally) does not change

2 Likewe hadwithout the disease; with no preytaxis, predators invade an endemic steady state as a travelling
wave with the analytic minimum wavespeed (not shown).
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Fig. 7 Predator wave invading an endemic prey-only steady state. Predators are repelled by (a) susceptible
prey (FS = −10, FI = 0) and (b) infected prey (FS = 0, FI = −10). Both (a) and (b) demonstrate that
the predator wave spreads at the analytic wavespeed, and that spatiotemporal chaos or oscillations occur
far behind the wavefront. Other parameters: same as in Fig. 6. The times and lines used are the same as in
Fig. 6

the prey density as prey density is the same in front of and behind the disease invasion
wavefront, and instead the predator density has been reduced. This reduction in preda-
tor density is consistent with the idea that the predator and disease are exploitative
competitors (Hardin 1960).
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Fig. 8 Infection wave invading predator–prey steady state. No preytaxis. The disease spreads at the analytic
wavespeed, which is represented by the vertical line, as before. The times and lines used are the same as in
Fig. 6. Parameter values: same as in Fig. 6 except β = 1.5

4.3.1 With Attractive Preytaxis

Nowwe consider that predators are attracted to susceptible prey. Since it is the disease
that is invading and not the predator, there is no direct intuition that would suggest
that preytaxis would change the wavespeed, and this is what we find in Fig. 9a, as
the travelling wave follows the ‘moving line’. Now, suppose that infected prey attract
predators. Here we find that preytaxis can have an impact on the wavespeed, although
this impact seems weak. For example, in Fig. 9b, the disease wave has just about
overtaken the ‘moving line’, despite the attractive strength of preytaxis being particu-
larly large (FI = 20). The suspected reason for the increased wavespeed is as follows.
Once a disease epidemic wavefront is formed, predators would move up the wavefront
resulting in a trough in predator density just ahead of the wave and a peak of predator
density just behind the wavefront. Having a reduced predator density directly in front
of the wave means that (susceptible) prey density is higher. Combining these two
effects (their relative importance is not known), the infected prey can spread a little
faster since there are more susceptibles to infect as well as a reduced death rate from
the reduction in predator density just ahead of the wavefront.

4.3.2 With Repulsive Preytaxis

Figure 10 demonstrates some interesting results that occur when susceptible prey repel
predators. In Fig. 10a, the disease wave is moving faster than the analytic wavespeed,
with oscillations in the tail.
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Fig. 9 Infection wave invading predator–prey steady state. a Susceptible prey attract predators (FS > 0),
and b infected prey attract predators (FI > 0). In (a), the infection wave moves at the analytic wavespeed,
whereas in (b), the wavespeed is faster than the analytic wavespeed. The times and lines used are the same
as in Fig. 6. Parameter values (a) FS = 20 and FI = 0 and (b) FS = 0 and FI = 20. Other parameters:
same as in Fig. 8

Why is this wave faster than expected? As we have seen in the predator invasion
with repulsive preytaxis (Fig. 5b), the system can be oscillatory/chaotic. In Fig. 10a,
the presence of an infection seems to perturb the predator–prey steady state, resulting
in such oscillations and chaos. We will call these oscillations and chaos within the
predator–susceptible prey system ‘turbulence’, a ‘turbulence’ that spreads over time
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Fig. 10 Infection wave invading predator–prey steady state. Susceptible prey repel predators. Comparison
of (a) density-dependent and (b) frequency-dependent transmission. In (a), the wave moves faster than the
analytic wavespeed, whereas in (b) the wave moves at the same speed as the analytic wavespeed. The times
and lines used are the same as Fig. 6, with arrows added to (b) to emphasise the location of the grey line
representing the expected position of the disease wavefront according to the analytic wavespeed. Parameter
values (a) β = 1 and (b) βFD = 1.5. Other parameters: same as in Fig. 8 except FS = −5 and FI = 0

at its own speed. In the turbulence, we have that predator density is on average smaller
than at the steady state, and total prey density is on average higher than at the steady
state (akin to N > N∗ and P < P∗ described in Bate and Hilker 2013b and Arm-
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Fig. 11 Infection wave invading predator–prey steady state. Susceptible prey repel predators. Higher trans-
missibility than in Fig. 10a. The disease spreads at the analytic wavespeed. The times and lines used are
the same as in Fig. 6. Parameter values: β = 1.2, otherwise same as in Fig. 8

strong and McGehee 1980). If the turbulence is moving fast enough to ‘escape’ the
disease (as is the case in Fig. 10a), the assumption of a predator–prey steady state
ahead of the infection wave for the analytic wavespeed is no longer valid, and instead
the infection wavespeed should be based on the (probably average) densities of the
turbulence ahead of the wave.

Now suppose that the disease has frequency-dependent transmission and compare
Fig. 10b with Fig. 10a. Figure 10b shows the same turbulence as Fig. 10a. However,
the disease wave moves only at the analytic wavespeed and no faster; the turbulence
does not speed up thewave. The lack of an increasedwavespeed in turbulence supports
the idea that the increase in wavespeed in Fig. 10a is due to the change in the average
predator and prey densities in the turbulence, as it is reminiscent of results in Bate and
Hilker (2013b). In Bate and Hilker (2013b), it was found that the endemic thresholds
for predator–prey steady states and (temporal) oscillations are different for density-
dependent transmission but are the same for frequency-dependent transmission.

Back to density-dependent transmission, if we increase transmissibility from β = 1
(Fig. 10a) to β = 1.2 (Fig. 11), then there are no oscillations in the tail and the
wavespeed is not faster than the infected prey. Instead, there is a pulse in prey density
around the disease invasion wavefront, but prey density behind the wavefront is the
same as ahead of the wavefront. Firstly, the disappearance of oscillations is probably
the result of the increase in the infected prey population from the increase in trans-
missibility, which increases the total mortality of the total prey class. This additional
mortality is known to stabilise Rosenzweig–MacArthur predator–prey oscillations
(Hilker and Schmitz 2008,and references therein). It also restricts the susceptible pop-
ulation, probably flattening susceptible prey gradients, and thus reducing the strength
of preytaxis. Likewise, increasing transmissibility from β = 1 to β = 1.2 increases
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Fig. 12 Infection wave invading predator–prey steady state. Infected prey repel predators. The infection
wave spreads at the same speed as the analyticwavespeed. Behind thewavefront the dynamics are oscillatory
or chaotic. The times and lines used are the same as in Fig. 6. Parameter values: same as in Fig. 8 except
FS = 0 and FI = −10.

the analytical wavespeed, resulting in the infection wave being fast enough to keep up
with the turbulence, and stabilises it. In such a case, there is no turbulent ‘pull’ and
the wavespeed is the same as the analytic wavespeed.

Figure 12 considers the case where infected prey repel predators. The wavespeed
is the same as the analytic wavespeed, i.e. the repulsive preytaxis does not speed up
or slow down the travelling wave. In the tail behind the wave, there is a short window
where the system is near the coexistent steady state before there is a shift to a regime
of spatiotemporal oscillations/chaos in the wake of the travelling wave, a phenomenon
already seen for repulsive preytaxis for predator invasions.

5 Discussion and Conclusions

In this paper, we analysed the wavespeed of various invasion scenarios in a susceptible
prey–infected prey–predator system and investigated the effect preytaxis has on the
wavespeed of these invasions. In the absence of preytaxis, the wavespeed of the travel-
lingwave is the same as the analyticalminimumwavespeed.Adding preytaxis does not
necessarily change the travelling wave’s wavespeed. However, there are many cases
where preytaxis increases the wavespeed for predator and disease invasion waves. An
overall summary of our results is given in Table1.

On the one hand, attractive preytaxis increases the wavespeed for a predator inva-
sion into a prey population, a phenomenon found inAinseba et al. (2008). In particular,
we found a preytaxis-induced wave where there would be no wave due to no predator
diffusion in the absence of preytaxis. On the other hand, repulsive preytaxis does not
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seem to slow down the predator invasion wavespeed. The suspected reason for this is
that the analytically derived wavespeed is a minimum speed for a travelling wave to
exist (although some transient waves can be slower; Hastings 1996). This is counter-
intuitive as we expect repulsive preytaxis to slow down travelling waves. We suspect
that this difference can be resolved if we consider that the shape of the wave would
be that of a faster, shallower wave that is unstable when there is no preytaxis, but the
preytaxis slows down this wave and makes it the stable wave (Murray 2002, Chapter
13, especially page 446 and Figure 13.3, suggests that faster waves are shallower, at
least for the Fisher model).

On top of the impact on the wavespeed, we found that repulsive preytaxis has a
destabilising effect, creating and exacerbating predator–prey oscillations which do not
exist in the absence of preytaxis. For example, we found many scenarios where, in
the absence of spatial effects, the predator–prey steady state is stable, but with spatial
effects, the predator–prey steady state is unstable and instead spatiotemporal oscilla-
tions and/or chaos are the dominant dynamics. This phenomenon was also recently
found in Wang and Yang (2017), and we demonstrate analytically in Appendix C
that repulsive preytaxis can destabilise an otherwise stable steady state. In the context
of travelling waves, the oscillations resemble convective instability (Sherratt et al.
2014; Dagbovie and Sherratt 2014, and references therein). In particular, there are
windows of dynamical stabilisation (Petrovskii and Malchow 2000; Malchow et al.
2008), where there is some region behind the travelling wave where the (convectively)
unstable predator–prey steady state appears to be stable. Dynamical stabilisation usu-
ally occurs with convective instability where the instability moves more slowly than
the travelling wave. (If convective instability can be confirmed, to our knowledge, this
would be the first case of convective instability where the steady state is stable when
only considering the underlying kinetic ODEs.)

In this paper, we demonstrate that the impact of a disease can be considerable,
with preytactic effects being considerably stronger for infected prey and considerably
weaker for susceptible prey since predator populations have a disproportionate impact
on infected prey population densities and little impact on susceptible prey population
densities. Likewise, the consequences of preytaxis on a disease epidemic can lead
to faster than expected epidemic wavespeeds if either infected prey are attractive for
predators or when susceptible prey are sufficiently repulsive for spatiotemporal oscil-
lations to occur and the disease transmissibility is density dependent and sufficiently
weak to allow the spatiotemporal oscillations to outpace the disease wave. The former
is due to predators being attracted away from the tip of thewavefront, whereas the latter
is suspected to be due to the differences in average prey density in the spatiotemporal
oscillations (akin to Bate and Hilker 2013b).

5.1 Preytaxis andModel Assumptions

Here, we have assumed direct preytaxis where preytaxis coefficients are constant. This
is the simplest assumption to make and has been used elsewhere (Grünbaum 1998;
Lee et al. 2009), but other choices of taxis can be made. For example, Lee et al. (2009)
also consider FS → FS

S , the same form as that in the chemotactic model (Keller and
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Segel 1971). Lee et al. (2008) adapted this by using FS
S+τ

and FS
(S+τ)2

(which was also
suggested for chemotaxis by Tyson et al. 1999), to avoid the singularity around S = 0.
Ainseba et al. (2008) did not give an explicit form for the preytaxis, but assumed that
there is no preytaxis once prey density is above some threshold.

The choice of preytaxis terms focuses on the gradient of prey density. But surely the
predator would benefit most from moving towards areas that maximise growth. This
means preytaxis would be based on the gradient of the functional response and not of
prey density. In fact, there are many cases discussed in Bate and Hilker (2014), where
moving towards regions of high prey density would be a bad strategy for predators due
to group defence. Additionally, if preytaxis is linked to numerical response gradients,
then differences between handling times or attack/search rates for susceptible and
infected prey (e.g. from infected prey being easier to catch) would also affect the
strength of preytaxis.

We have only considered preytaxis, the movement of predators towards or away
from prey. However, prey could also find predators repulsive or attractive. In fact,
in Chapter 1 of Murray (2003), such spatial systems are described as ‘pursuit and
evasion’, suggesting prey movement is equally important to predator movement in
predator–prey interactions. But preytaxis only considers whether predators actively
pursue prey. It is very reasonable to consider prey evading predators or ‘predataxis’
(Berleman et al. 2008). It is usually in the prey’s interest to avoid predators. For
example, white-tailed deer tend to gather in between wolf pack territories (Murray
2003, Chapter 14). Likewise, there aremany predators that attract prey using chemical,
light or other effects. Angler fish attract prey with light and pitcher plants attract flies
using their distinctive smell. Including predataxis could lead to other interesting (and
possibly counter-intuitive) results. For example, given that attractive infected prey in
an infection wave increase the infection’s wavespeed, then a repulsive predator wave
(i.e. repulsive predataxis) should lead to a gathering of prey just ahead of the predator
wave, leading to an increasedpredatorwavespeed.However, suchpredataxis could also
be dependent on the predation pressure itself and not just on the number of predators.
This means that prey have safety in numbers as they saturate the predator’s functional
response, at least until predator density increases from movement and growth.

In this paper, we explored the interaction of infected prey and preytaxis. Although
to our knowledge this is a novel idea, there are several reasonswhywemight expect the
infection of prey to influence predator movement. For many predators, predation on
infected prey can be beneficial, even in several cases with trophic-transmitted diseases
(Lafferty 1992). In particular, there is a prevailing view in ecology that predators
capture disproportionately many sick, weak, injured, young or old individuals of prey
(Errington 1946; Slobodkin 1968; Curio 1976). Additionally, many parasites alter the
behaviour or appearance of their host that would make predation more likely (Dobson
1988; Moore 2002). For example, infection of mosquitofish (Gambusia holbrooki) by
the nematode Eustrongylides ignotus lead to aberrant behaviour including lethargy,
convulsions, and buoyancy abnormalities, resulting that infected prey were selected
preferentially by predatory fishes (Coyner et al. 2001), whereas red grouse infected
with Trichostrongylus tenuis emit stronger scents that make it easier for predators
to find (Hudson et al. 1992). Conversely, Toxoplasma gondii-infected rats become
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fearless and attracted to feline urine (Berdoy et al. 2000; Vyas et al. 2007), which
could be considered infection-induced attractive predataxis.

Repulsive preytaxis seems to be the cause for much of the interesting dynamics in
this paper (like pattern formation and increased epidemicwavespeeds), but the concept
of repulsive preytaxis might seem counter-intuitive. Repulsive infected prey are easier
to give examples of. Predators may wish to avoid infected prey for the unpleasant
taste, sight or smell. Predators may also fear of getting sick from eating prey. This
is particularly likely with pathogens and parasites that are trophically transmitted
(Lafferty 1992). This does require infected prey to be distinguishable from susceptibles
from a distance, or at least for predators to gain a sense of the density of infected prey
from a distance. If susceptible and infected prey are indistinguishable for predators,
the experience of meeting infected prey may put predators off prey in general, and
thus susceptible prey may also become repulsive.

It may seem difficult to understand a predator finding susceptible prey repulsive
(in the absence of disease). However, the repulsiveness of susceptible prey could be
a variety of defence mechanisms. Such mechanisms could be forms of group defence
(discussed in Krause and Ruxton 2002; Freedman and Wolkowicz 1986; Bate and
Hilker 2014). Many group defence mechanisms influence the functional response, e.g.
by increasing the handling time due to predator confusion. In addition to functional
response effects, there are possibly several other mechanisms for repulsive prey. For
example, predators may fear getting mobbed from large groups of prey or prey may
expel repellent chemicals or sounds (most of these repellents are reactive; passively
spreading repellent chemicals is largely for sessile species like plants, corals and
sponges, Kubanek 2009). Additionally, prey could potentially alter the environment to
something uncomfortable for predators; for example, preymight attract enemies of the
predator that the predatorwould seek to avoid, or perhaps a herbivore prey could change
the density of foliage away from those preferred by the predator. It is also worth noting
that for predator invasion, the predator (and prey) may be naive to each other, although
this argument does fall down if the time for the travelling wave to form and spread is
at a comparable or slower time-scale than the time needed for the naivety to disappear.

In the presence of infection, predators may prefer moving towards regions of high
infected prey densities as infected prey are often weaker and more vulnerable. Like-
wise, infected prey may attract predators if the infection is trophically transmitted. In
such cases, repulsive susceptible prey can be understandable as predators find them
difficult to overcome, whereas infected prey would attract predators.

In conclusion, we have found that by including preytaxis in an eco-epidemiological
model, we can find many cases where preytaxis increases the wavespeed of predator
and disease invasions. Preytaxis can also change the shape of the travelling wave and
cause some spatiotemporal oscillations and/or chaos, but preytaxis has not been found
slow down predator and disease invasions.

Appendix A Analytic MinimumWavespeeds

To find analytical minimum wavespeeds, we need to assume there is a travelling wave
solution with constant wavespeed, with a native steady state ahead of the wave and
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a coexisting steady state behind the wave. By doing so, we use the transformation
Z = X − ωT (where ω is the constant wavespeed) to arrive at a system of ODEs.
After linearising ahead of the wave (i.e. at the native steady state) we look at the
eigenvalues to see if there are any complex eigenvalues that would lead to unrealistic
travelling waves (i.e. negative populations), and consequently find conditions on the
wavespeed.

A.1 Calculating for MinimumWavespeeds

For travellingwaves, wewill seek solutions of the form (N (X , T ), I (X , T ), P(X , T ))

= (N (Z), I (Z), P(Z)), where Z = X − ωT and ω is the wavespeed. We will also
assume, for theoretical purposes, that the spatial domain is infinite. This is not a big
assumption since the spatial domain is much larger than the wave itself. Likewise, we
have assumed that DR = 1. With this, the PDEs in Eqs. (10)–(12) become:

−ω
dN

dZ
= d2N

dZ2 + Ng(N ) − μI − f (N , I )P, (13)

−ω
dI

dZ
= d2 I

dZ2 + I (k(N , I ) − fI(N , I )P), (14)

−ω
dP

dZ
= DP

d2P

dZ2 − d

dZ

(
PFS

dN

dZ
+ P(FI − FS)

dI

dZ

)
+ P( f (N , I ) − 1). (15)

Equations (13)–(15) can be rewritten as a system of six first-order ODEs,

dN

dZ
= Ṅ , (16)

dṄ

dZ
= −ωṄ − (Ng(N ) − μI − P f (N , I )), (17)

dI

dZ
= İ , (18)

d İ

dZ
= −ω İ − I (K (N , I ) − P fI (N , I )), (19)

dP

dZ
= Ṗ, (20)

d Ṗ

dZ
= −1

DP

(
ω Ṗ + P( f (N , I ) − 1) −

(
FS

(
Ṗ Ṅ + P

dṄ

dZ

)
+ (FI − FS)

(
Ṗ İ + P

d İ

dZ

)))

= −1

DP
[Ṗ(ω − FS Ṅ − (FI − FS) İ ) + P( f (N , I ) − 1) . . .

. . . − P[FS[−ωṄ − (Ng(N ) − μI − P f (N , I ))] . . .

. . . + (FI − FS)[−ω İ − I (K (N , I ) − P fI (N , I ))]]] (21)

Without any preytaxis (FS = FI = 0), Eq. (21) becomes:

d Ṗ

dZ
= −1

DP
(ω Ṗ + P( f (N , I ) − 1)).
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The Jacobian for Eqs. (16)–(21) (including preytaxis) is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · ·
−g(N ) − N ∂g(N )

∂N + P ∂ f (N ,I )
∂N −ω μ · · ·

0 0 0 · · ·
−I

(
∂K (N ,I )

∂N − P
∂ f I (N ,I )

∂N

)
0 −(K (N , I ) − P fI (N , I )) · · ·

−I
(

∂K (N ,I )
∂ I − P

∂ f I (N ,I )
∂ I

)
0 0 0 · · ·
−P
DP

(
∂ f
∂N (N , I )

−FS
DP

(ωP − Ṗ) −P
DP

(
∂ f
∂ I (N , I ) + FS

(
μ + ∂ f

∂ I (N , I )
)

· · ·
+FS

(
g(N ) + N ∂g(N )

∂N − P ∂ f (N ,I )
∂N

)
+(FI − FS )

(
(K (N , I ) − P fI (N , I ))

+(FI − FS )I
(

∂K (N ,I )
∂N − P

∂ f I (N ,I )
∂N

))
+I

(
∂K (N ,I )

∂ I − P
∂ f I (N ,I )

∂ I

)))

· · · 0 0 0
· · · 0 f (N , I ) 0
· · · 1 0 0
· · · −ω I f I (N , I ) 0
· · · 0 0 1

· · · −(FI −FS )

DP
(ωP − Ṗ) −1

DP
( f (N , I ) − 1 −1

DP
(ω − FS Ṅ

+FS [ωṄ + (Ng(N ) − μI − 2P f (N , I ))]
+(FI − FS )[ω İ + I (K (N , I ) − 2P fI (N , I ))]) −(FI − FS ) İ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A.1.1 Predator Invasion in the Absence of Infected Prey

Consider that there is a prey-only steady state in front of a travelling wave of predators
(thus we will ignore all infected prey equations/terms). We can linearise around this
steady state, (N , Ṅ , P, Ṗ) = (N∗, 0, 0, 0), where g(N∗) = 0, and ignore the disease,
to get the Jacobian:

⎛
⎜⎜⎝

0 1 0 0
cN∗ −ω μ 0
0 0 0 1
0 0 − f (N∗,0)−1

DP
− ω

DP

⎞
⎟⎟⎠

Fortunately, this Jacobian is block upper triangular, so the eigenvalues are the eigen-

values of
( 0 1
cN∗ −ω

)
and

( 0 1
− f (N∗,0)−1

DP
− ω

DP

)
. The former has eigenvalues −ω±√

ω2+4cN∗
2 ,

which are always real, whereas the latter has eigenvalues −ω±
√

ω2−4DP( f (N∗,0)−1)
2DP

,

which are real as long as ω ≥ 2
√
DP( f (N∗, 0) − 1). This means that the travel-

ling wave has a wavespeed of at least ωcrit = 2
√
DP( f (N∗, 0) − 1), a minimum

wavespeed that is the actual wavespeed if we assume ‘linear determinacy’. It is worth
noting that this is independent of the preytaxis coefficients (FS and FI). The reason for
this is that at the leading edge of the predator invasion, prey density is nearly constant
and thus there is no prey gradient for preytaxis to occur. However, this does not mean
that preytaxis will have no effect on the wave away from the front edge.
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A.1.2 Predator Invasion in the Presence of Susceptible and Infected Prey

Starting with the steady state (N , Ṅ , I , İ , P, Ṗ) = (N∗, 0, I ∗, 0, 0, 0), where
N∗g(N∗) = μI ∗ and K (N∗, I ∗) = 0, the Jacobian becomes:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−g(N∗) + cN∗ −ω μ 0 f (N∗, I ∗) 0
0 0 0 1 0 0
−I ∗ ∂K (N∗,I ∗)

∂N 0 −I ∗ ∂K (N∗,I ∗)
∂ I −ω I ∗ f I (N∗, I ∗) 0

0 0 0 0 0 1
0 0 0 0 −1

DP
( f (N∗, I ∗) − 1) −ω

DP

⎞
⎟⎟⎟⎟⎟⎟⎠

Again, this is block upper triangular, and thus we get the subsystem( 0 1
− f (N∗,I∗)−1

DP
− ω

DP

)
. This has eigenvalues −ω±

√
ω2−4DP( f (N∗,I ∗)−1)

2DP
. This means that

the travelling wave has a wavespeed of at least ωcrit = 2
√
DP( f (N∗, I ∗) − 1), which

is the wavespeed assuming ‘linear determinacy’.
The rest of the system is:

⎛
⎜⎜⎝
0 1 0 0
−g(N∗) + cN∗ −ω μ 0
0 0 0 1
−(β − c)I ∗ 0 β I ∗ −ω

⎞
⎟⎟⎠

This subsystem has eigenvalues λ = −ω±
√

ω2−2(A±√
A2−4B)

2 , where A = g(N∗)−
cN∗ − β I ∗ < 0 and B = I ∗(β(μ + cN∗ − g(N∗)) − cμ) > 0 (these are the trace
and determinant of the Jacobian of the susceptible infected prey subsystem around the
endemic steady state, and A2−4B < 0 is the condition for the steady state to be a stable
focus). These eigenvalues, however, can have complex parts since N∗, I ∗ > 0, and
thus a focus around (N∗, I ∗) can be realistic (i.e. no issue about negative populations)
and consequently this subsystem should not pose a restriction on the wave speed.

A.1.3 Disease Invasion in the Presence of Predators

Here, we start with the steady state (N , Ṅ , I , İ , P, Ṗ) = (N∗, 0, 0, 0, P∗, 0), where
f (N∗, 0) = 1 and P∗ = N∗g(N∗) (and assuming g(N∗) − cN∗ − P∗ ∂ f (N∗,0)

∂N < 0
for the steady state to be stable). Then the Jacobian becomes:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

−g(N∗) + cN∗ + P∗ ∂ f (N∗,0)
∂N −ω μ 0 1 0

0 0 0 1 0 0
0 0 −(K (N∗, 0) − P∗ fI(N∗, 0)) −ω 0 0
0 0 0 0 0 1

−P∗
DP

(
∂ f
∂N (N∗, 0) + FS

(
g(N∗) −FSωP∗

DP

−P∗
DP

(
∂ f
∂ I (N∗, 0) + FS

(
μ + ∂ f

∂ I (N∗, 0)
)

(FS−FI)ωP∗
DP

FSP∗
DP

−ω
DP

−cN∗ − P∗ ∂ f (N∗,0)
∂N

))
+(FI − FS)(K (N∗, 0) − P∗ fI(N∗, 0))

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The middle two rows (for I and İ ) can be separated as all other terms

in these rows are zero. Thus we have the matrix
(

0 1
−(K (N∗,0)−P∗ fI(N∗,0)) −ω

)
,

which has the eigenvalues −ω±
√

ω2−4(K (N∗,0)−P∗ fI(N∗,0))
2 . These are real if ω2 ≥

4(K (N∗, 0) − P∗ fI(N∗, 0)) and thus the suspected minimum wavespeed is ωcrit =
2
√
K (N∗, 0) − P∗ fI(N∗, 0).
However, we need to check the other eigenvalues, namely of:

⎛
⎜⎜⎜⎝

0 1 0 0
−π −ω 1 0
0 0 0 1

−P∗
DP

(
∂ f
∂N (N∗, 0) + FSπ

) −FSωP∗
DP

FSP∗
DP

−ω
DP

⎞
⎟⎟⎟⎠ (22)

where π = g(N∗)−cN∗ − P∗ ∂ f
∂N (N∗, 0). The eigenvalues of this system are difficult

to find given this is a quartic equation. However, they do not need to be real as they
represent the predator–prey subsystem and spiralling around the predator–prey steady
state poses no threat of negative populations. Thuswe do not have anymore restrictions
on the values for ω.

However, if we assume that FS = 0 and DP = 1, then the characteristic equation
can be reduced from a quartic to a quadratic equation: τ 2 + πτ + P∗ ∂ f

∂N (N∗, 0),
where τ = λ(λ + ω) and π = g(N∗) − cN∗ − P∗ ∂ f

∂N (N∗, 0) < 0. From this,

we have τ = −π±
√

π2−4P ∂ f
∂N (N∗,0)

2 . Thus we have λ = −ω±√
ω2+4τ
2 . Since π < 0

and ∂ f
∂N (N∗, 0) > 0, then all eigenvalues are real if and only if τ is real, i.e. π2 >

4P∗ ∂ f
∂N (N∗, 0). This condition is the same as the condition for the predator–prey

steady state to be stable. The eigenvalues for other values of FS and DP have not been
found.

A.2 Summary and Conclusions

To summarise the previous calculations, the analytical minimum wavespeeds are:

– Predator invasion in the absence of infected prey:
ωcrit = 2

√
DP( f (N∗, 0) − 1), where N∗ is the density of prey at the disease-free

prey-only steady state.
– Predator invasion in the presence of infected prey:

ωcrit = 2
√
DP( f (N∗, I ∗) − 1), where N∗ and I ∗ are the densities of the total

prey and infected prey at the endemic prey-only steady state, respectively.
– Disease invasion in the presence of predators:

ωcrit = 2
√
K (N∗, 0) − P∗ fI(N∗, 0), where N∗ and P∗ are the densities of the

prey and predator at the disease-free prey–predator steady state, respectively.
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Appendix B Numerical Methods

The initial condition consists of two parts. First, there are the native specie(s), whichwe
assume will be at the relevant (stable, at least in a non-spatial sense) coexistent steady
state. The predator–prey and endemic prey steady-state initial conditions are derived
by running MATLAB’s ‘ode45’ and taking their densities at the final time (t = 1000).
The invading initial condition will generally be a step function of 0.1 for x ≤ 20 and
zero otherwise. However, for some scenarios, in particular when predator diffusion is
very small (or zero), it is preferable for a smooth initial condition to be used. In these
cases, a smooth approximation of the step function, 0.05(1 − tanh(x − 20)), is used.

The numerical scheme can be written as follows:

N (x, t + tstep) = N (x, t) + Ngrowth(x, (t, t + tstep)) + Ndiffusion(x, (t, t + tstep)),
(23)

I (x, t + tstep) = I (x, t) + Igrowth(x, (t, t + tstep)) + Idiffusion(x, (t, t + tstep)),
(24)

P(x, t + tstep) = P(x, t) + Pgrowth(x, (t, t + tstep)) + Pdiffusion(x, (t, t + tstep)) . . .

. . . + Ptaxis(x, (t, t + tstep)). (25)

where, for example Ngrowth(x, (t, t + tstep)), is the growth of N at point x over the
time interval (t, t + tstep).

However, each of these terms have different properties. In particular, using one
numerical scheme to deal with all these simultaneously would be highly problematic.
In particular, the diffusion terms suggest using a scheme appropriate for parabolic
PDEs, but such schemes would have real difficulty handling the taxis terms. Instead of
trying to use one scheme to solve the whole system simultaneously, we will split the
system into a sequence of smaller problems using a Strang splitting scheme (Chapter
18 of LeVeque 1992; Tyson et al. 2000). This scheme is implemented as follows.

First, solve the diffusion only problem numerically for half a time step and take
this as the new solution at time t , i.e. for predators we have:

P∗(x, t) := P(x, t + 0.5 ∗ tstep) = P(x, t) + Pdiffusion(x, (t, t + 0.5tstep)) (26)

Do the same for susceptible and infected prey to derive N∗(x, t) and I ∗(x, t),
respectively. Following this, we then perform a taxis half step using an appropriate
numerical scheme to again get a new solution at time t (note, this step only changes
the predators since there is no taxis in the other classes).

P ′(x, t) := P∗(x, t + 0.5tstep) = P∗(x, t) + Ptaxis(x, (t, t + 0.5tstep)) (27)

The next step is to take a full time step with only the growth dynamics, using an
appropriate solver. This will form a new solution, which will be centred at time t +
0.5tstep.

P̂(x, t + 0.5tstep) := P ′(x, t + tstep) = P ′(x, t) + Pgrowth(x, (t, t + tstep)) (28)
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Likewise, we get N̂ (x, t + 0.5tstep) and Î (x, t + 0.5tstep) by the same method, using
N ′(x, t) and I ′(x, t) instead, respectively. Next, another taxis half step is taken (which
only affects the predator equation). This gives a new solution at time t + 0.5tstep.

P̄(x, t + 0.5tstep) := P̂(x, t + tstep) = P̂(x, t) + Ptaxis(x, (t + 0.5tstep, t + tstep))

(29)

Finally, we take this solution and incorporate a half step of diffusion to get a final
solution for time t + tstep.

P(x, t + tstep) := P̄(x, t + 0.5tstep) + Pdiffusion(x, (t + 0.5tstep, t + tstep)) (30)

Do the same with N̂ (x, t + 0.5tstep) and Î (x, t + 0.5tstep) to get N (x, t + tstep) and
I (x, t + tstep), respectively.

This scheme splits the problem into several smaller, moremanageable steps, as well
as allowing us to choose appropriate numerical methods for each subproblem instead
of trying to use one scheme that would have difficulty handling the whole. One key
advantage of this scheme is that it is of order 2 with respect to time and unconditionally
stable as long as each subproblem is order 2 or higher.

For the growth step, the dynamics are local and thus a simple explicit ODEs solver
can be used. We used the midpoint method (second-order Runge–Kutta). This is a
reliable scheme for ODE, and because of this, it was chosen for the full step. For
diffusion, both a forward-time–centred-space (FTCS) scheme and a Crank–Nicolson
scheme were used and compared. The former is of order 1 with respect to time (order
2 with respect to space). This scheme is conditionally stable; it is stable if

tstep
(xstep)2

<

0.5. The latter scheme is implicit and of order two with respect to time and space.
It is unconditionally stable, although there are still numerical issues about artificial
oscillations during the first few steps if

tstep
(xstep)2

is too large and initial condition is

too spiky. Consequently, the same step sizes will be used for both FTCS and Crank–
Nicolson. Results between the two schemes have been compared and agree very well,
the only visible difference being around x = 0 in some cases of spatiotemporal chaos.
There are no noticeable differences with respect to the wavespeed and the wavefront.

For the taxis term, we have used a two-step Lax–Wendroff scheme. It is an explicit
second-order (with respect to both time and space) scheme for hyperbolic PDEs (Chap-
ter 11 of LeVeque 1992;Morton andMayers 2002). It is very good at following suitably
smooth solutions, but has issues around very large gradients and discontinuities, where
solutions will overshoot and oscillate around sharp (i.e. non-smooth) points, particu-
larly behind the discontinuity. These oscillations dampen away from the discontinuity.
This can lead to issues in a few cases, especially if this results in negative populations.
However, this scheme does follow the magnitude of peaks and their wavespeed very
well, two key aspects to our exploration of travelling waves. Note that this issue only
really matters if repulsive preytaxis is too strong compared to diffusion in predators.
In particular, if DP = 0, then the numerical scheme breaks down for any repulsive
preytaxis as negative populations arise. Other numerical schemeswere considered. For
example, an upwind scheme was considered, but it is only of order 1 in time and space.
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Fig. 13 Predator model. Attractive preytaxis, no predator diffusion. Step function as an initial condition (in
contrast to Fig. 3 which used a smooth approximation). Dampened ‘spikiness’ occurs directly behind the
wave due to the use of Lax-Wendroff to simulate preytaxis. However, comparing with Fig. 3, after some
initial numerical issues around the discontinuity, the same travelling wave and wavespeed will eventually
match, suggesting the numerical issue have little to no bearing on the long-term dynamics

It does not exhibit these oscillations around sharp points, but instead these points are
smeared over as if there was some strong diffusive force, an effect that is undesirable
as it would artificially flatten the wavefront, reducing prey gradients and thus reduce
the strength of preytaxis. Another second-order scheme is Beam–Warming, which is

123



Preytaxis and Travelling Waves in an Eco-epidemiological Model 1027

like the Lax–Wendroff scheme except the oscillations are ahead of the wave (LeVeque
1992, Chapter 11). This potentially alters the dynamics ahead of the wave and may
lead to negative populations in cases of attractive preytaxis. Likewise, the leapfrog
scheme is of order two, but it has oscillations behind the wave that do not die out
(Morton and Mayers 2002). These oscillations are generic for second-order schemes
(LeVeque 1992, Chapter 11).

It is well worth noting that the inclusion of predator diffusion increases the smooth-
ness of the numerical solutions, which improves the reliability of the Lax–Wendroff
scheme. This is why the step function is used for every simulation where DP > 0.
However, in the absence of predator diffusion, Fig. 13a shows that the step function
initial condition does not smooth out straight away but instead brings in damped oscil-
lations/spikiness just behind thewavefront. This contrastswith Fig. 3a,where a smooth
wave forms. However, even by t = 5, the solution in Fig. 13a is largely smooth for the
predator, that the oscillations and spikiness have largely gone. In fact, both Figs. 3b and
13b show that the wave moves at the same speed (actually, in Fig. 13a the travelling
wave stays about 0.25 spatial units behindFig. 3b over times t = 5, 10, 20, 50 and 100,
this difference can be explained by the time taken to converge to the wavefront). How-
ever, without diffusion, even the slightest repulsive preytaxis results in negative preda-
tor populations around the discontinuity in the initial condition and the eventual break-
down of the numerical solution with Lax–Wendroff; in such cases, a Beam–Weaming
scheme should be used instead as it would behave like Lax–Wendroff does in Fig. 13.

Boundary conditions are incorporated by setting the first and last spatial point to
be equal to their immediate neighbour (and thus there is zero flux). This is done after
each substep.

All simulations have step sizes of tstep = 0.0005 and xstep = 0.05 for time and space,
respectively (unless stated otherwise). These step sizes satisfy stability conditions for
the diffusion step as both FTCS and Crank-Nicolson because

tstep
(xstep)2

= 0.2 < 0.5 (in

fact, it probably is 0.1 due to the half steps). Other time and space step sizes have been
considered and results do not look different as long as they are sufficiently small and the
condition

tstep
(xstep)2

< 0.5 is satisfied; in particular, the values for tstep and xstep in Fig. 4

give results that look identical to the default step sizes. This all suggests that the results
in this paper are robust and a consequence of the system and not numerical artifacts.

Overall, the use of a Strang splitting scheme allows the full model to be split into a
sequence of smaller models, which individually can be solved with well-established
methods. Although there are some issues around a discontinuous initial condition for
the taxis step, these issues are negligiblewith sufficient levels of diffusion for predators,
and only seem to provide major inaccuracies when repulsive preytaxis is high and
diffusion very small (in which case, the Beam–Weaming scheme is more appropriate).

Appendix C Non-constant Steady States of the Spatiotemporal
Predator–Prey System

The purpose of this section is to demonstrate that attractive (repulsive) preytaxis has
a (de)stabilising effect on constant steady states for the predator–prey system.
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If we suppose that there is a (spatially varying) perturbation of the form (N ′, P ′) ∝
exp(iσ x +λt) around the constant coexistent predator– prey steady steady (N∗, P∗).
Then the Jacobian is:

J =
(

−σ 2 + (g(N∗) − cN∗ − P∗ ∂ f (N∗,0)
∂N ) −1

FSσ 2 + P∗ ∂ f (N∗,0)
∂N −DPσ

2

)
(31)

For this Jacobian, it has eigenvalues, λ that satisfy:

λ2 − trace(J )λ + det(J ) = 0. (32)

Now, trace(J ) = −(1 + DP)σ
2 + (g(N∗) − cN∗ − P∗ ∂ f (N∗,0)

∂N ). A condition for
stability would be that this is negative. If we assume that the steady state is stable in
the absence of spatial effects, then g(N∗)−cN∗−P∗ ∂ f (N∗,0)

∂N < 0, then trace(J ) < 0
for all σ .

Additionally, det(J ) = DPσ
2(σ 2 − (g(N∗) − cN∗ − P∗ ∂ f (N∗,0)

∂N )) + FSσ 2 +
P∗ ∂ f (N∗,0)

∂N . Given trace(J ) < 0, instability could occur if det(J ) < 0 for some
σ 2 > 0, which is equivalent to there being a positive root (with respect to σ 2) of
det(J ) = 0. Now, given P∗ ∂ f (N∗,0)

∂N > 0, both roots are of the same sign (and distinct),
which means that these roots are positive (and thus instability can occur) if and only
if FS < DP(g(N∗) − cN∗ − P∗ ∂ f (N∗,0)

∂N ). However, g(N∗) − cN∗ − P∗ ∂ f (N∗,0)
∂N is

negative as a consequence of assuming a stable (non-spatial) steady state, meaning
that the preytaxis has to be sufficiently repulsive (FS 
 0) for instability to occur.
Likewise, we can also conclude that attractive preytaxis (FS > 0) has a stabilising
effect.
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